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Figure 1: Workflow and interaction scheme of our Musicon system: the music data runs through a pre-trained Contrastive Learning of
Musical Representations (CLMR) model towards high dimensional neural features, which are further embedded into eight dimensions as
glyph parameters for characterising the music icon. The figure shows a customized icon for classical music and a list of retrieved songs.
Applications include sorting music files by style, identifying similar songs, and navigation within a playlist. An overview-first, details-on-
demand approach is used by enhancing icon contrast, useful for examining large song collections and distinguishing similar songs.

Abstract

This paper introduces a novel glyph-based design for music representation that leverages deep latent features to improve user-
directed search for music discovery. We propose a system that combines a pre-trained neural network model for high-level
music feature extraction with dimensionality-reduction methods for effective visual mapping of the intrinsic characteristics that
help distinguishing a song. We provide a search-by-icon user interface (Ul) that integrates glyph based on the neural features
in combination with other novel navigation methods to achieve intuitive search and exploration. A detailed user study validates
our approach, demonstrating its efficacy in enabling swift song clustering, identification, and retrieval. Our findings reveal that
our visual representation not only speeds up the music searching process but also fosters increased user interaction with digital
music libraries, representing a valuable contribution to the domain of music exploration and retrieval.

CCS Concepts
* Human-centered computing — Interaction design; Graph drawings; Information visualization;

1. Introduction ommendations and user-guided search and exploration. The latter,
in particular, plays a critical role in diversifying users’ music ex-
periences, a factor increasingly recognized for its correlation with
long-term user engagement [AMA*20]. Despite advancements in
algorithms for navigating music collections, the integration of in-

As music streaming platforms evolve, their role has expanded
from merely providing access to vast music collections to becom-
ing pivotal in music discovery [Cho19; HVS*19]. Users typically
engage with new music through two main avenues: algorithmic rec-
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novative visual cues into user interfaces remains limited. Conven-
tional icons, such as album art, provide minimal insight into a
song’s characteristics, forcing users to rely solely on auditory ex-
ploration to determine their preference. This highlights a gap in
user experience, as visual representations could potentially expe-
dite the discovery process by indicating auditory similarities, even
though music is primarily an aural medium [SZC*18; HVS*19].

Platforms like Spotify provide their users the function to per-
sonalize the playlist, yet these innovations fall short in conveying
the musical essence of unseen tracks from unfamiliar artists. The
inherent challenge lies in the inability to avoid a time-consuming
listening process. Our work posits that using visualization can pro-
vide information that can be efficiently parsed to compare charac-
teristics, such as mode, tempo, or mood. Hereby, we can notably
enhance user-guided search and exploration. Our solution reduces
the time users spend finding music that aligns with their taste or cur-
rent mood, especially when navigating with an open or exploratory
mindset [Woll0; HVS#*19]. This hypothesis is supported by evi-
dence suggesting that visual identifiers can expedite navigation in
user interfaces [LRFNO4]. Yet, our goal is not necessarily to derive
a global visual encoding of music, but rather a visualization method
to enable comparisons to facilitate exploration. Users do not have
to learn the meaning of individual representations in order to effec-
tively use them, and even in rather homogeneous song collections,
our visualization can provide a clear visual differentiation.

Our contributions are twofold. First, we propose an approach to
extract latent characteristics of music utilizing state-of-the-art deep
learning models. Second, we introduce a new visualization solu-
tion that employs custom-designed icons that embed these features
in visual cues, facilitating music exploration, including interaction
methods to compare, search, and categorize. It improves music vi-
sualization by combining advanced representation learning with
user-centered glyph design principles.

The article is organized as follows: Section 2 reviews related
work. Section 3 presents our approach, covering feature extrac-
tion, dimensionality reduction, and glyph generation. Section 4 in-
tegrates the icon into our UI prototype. Section 5 evaluates our
work through a user study, followed by a conclusion in Section 6.

2. Related Work

This section explores foundational work and recent advancements
in music features, latent representation learning, and glyph-based
music visualization, framing the context for our contributions to
music discovery through visual representation.

Understanding music features spans from low-level signal de-
scriptors to high-level semantic attributes. Traditional music infor-
mation retrieval (MIR) approaches focused on ‘hand-crafted’ fea-
tures, emphasizing explicit knowledge-based feature engineering
[SGU*14]. The advent of deep learning shifted the attention to-
wards automatic feature extraction, demonstrating strong perfor-
mance in capturing complex musical characteristics without exten-
sive domain knowledge [MBN*22]. Notable benchmarks such as
the Million Song Dataset (MSD) and Spotity Web API highlight
their utility in research, bridging content and context-based music
information [BEWL11; Skil6]. However, concerns regarding the
reproducibility, explainability and open research when using pro-

prietary data (like features from Spotify) have motivated us to focus
on alternative, open-source features for music representation.

Latent variable models have revolutionized the representation
of music by learning abstract features that encapsulate the in-
herent characteristics of musical pieces. These models, especially
Convolutional Neural Networks (CNNs), Variational Autoencoders
(VAEs), and Transformers, have facilitated a broad range of MIR
tasks, including genre classification, music recommendation, and
emotion recognition [HE10; KW13; VSP*17]. The transition to-
wards end-to-end learning models marks a significant shift from
traditional feature engineering, enabling more nuanced and com-
prehensive understanding of music data. Our work leverages these
advancements to derive latent representations that serve as a foun-
dation for music visualization.

Visualization plays a pivotal role in music discovery, enabling
users to navigate and explore music collections intuitively. Early
efforts by Kolhoff et al. [KPLO8] introduced music icons, utiliz-
ing parameterized glyphs to represent music features visually. Sub-
sequent research has expanded on this concept, exploring various
visual mappings and interactive interfaces for music exploration
[LRENO4; SAA*05]. Yet, challenges remain in designing visual
representations that effectively convey the complex nature of music
features while supporting user-friendly exploration. We build upon
this foundation and propose a novel glyph-based framework, using
deep learning-derived features, coupled to specialized visualization
and interaction techniques to enhance music discovery.

3. Our Approach

Our research is positioned at the intersection of MIR and visual-
ization, where we propose a novel strategy to enhance user-guided
music discovery in a large database through visual representation.
To achieve this goal, we introduce an innovative glyph design by
leveraging advanced latent features from the MIR model to pro-
vide immediate, intuitive insights into the music’s characteristics.
We also propose interaction mechanisms to not only facilitate a
more efficient and engaging music discovery experience but also
address the needs of users exploring music collections, looking for
new sounds that match their reference ideas. Figure 1 shows an
overview of our solution.

In this section, we will first discuss the feature extraction. Then,
we will map this high-dimensional representation to a lower dimen-
sional space to reduce the degrees of freedom of the information on
a star-glyph representation, whose design choices are explained in
the following. In the next section, we will then present our interface
that builds upon this song representation.

3.1. Feature extraction

We reviewed state-of-the-art research in music representation
learning, focusing on papers that provide full code and trained
weights due to the challenges of training. We reviewed 23 pa-
pers, of which ten presented pre-trained models suitable for down-
stream tasks. However, recommendation models were either multi-
modal [Mar17; CLMG21] or lacked code and weights [STML21;
VDS13]. Out of all options, we did identify the CLMR [SB21]
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Figure 2: UMAP embeddings of features extracted for genre classification on: MagnaTagATune (left), GTZAN (middle), and custom dataset

(right).

model as particularly suitable for our task, as we also show via an
analysis below. The CLMR model is an adaptation of the very ef-
fective SimCLR model [CKNH20], which was developed for con-
trastive learning of visual representations. Contrastive learning is
an unsupervised representation learning technique with the objec-
tive to maintain similarities and dissimilarities between data points
in the representation space. CLMR shows excellent performance, is
well documented, and lightweight to run. The network has learned
a representation of 512 dimensions over an input sample of about
2.6 seconds. The model was trained for the downstream task of
classification on the MagnaTagATune dataset [LWM*09]. We use
the model and weights as provided by the authors. Representations
over longer segments are averaged.

We verify the effectiveness of the CLMR representations by ex-
amining feature clusters to genre classification on multiple datasets
and comparing feature embeddings to the Spotify features.

Evaluation of CLMR model To ensure the suitability of the
model, we assessed its features for genre classification across three
datasets: MagnaTagATune, GTZAN [TCO02], and a small custom
dataset. The custom data is composed of several albums that are
considered iconic for various genres, details are given in Table 1.
Each dataset provided genre labels. By extracting features and em-
ploying the UMAP algorithm [MHM18] for 2D spatial embedding,
color-coding by genre revealed that genre-based clusters closely
matched the feature-based clusters. Figure 2 plots the 2D embed-
dings of these three datasets, which suggests the captured features
reflect high-level conceptual similarities across genres.

Comparison to Spotify features To explore how the selected rep-
resentations compared with Spotify’s own feature metrics, we cre-
ated a dataset of 10K data points which are selected from the over
1.2 million entries in the Spotify Dataset reported by Figueroa et al.
[Fig23]. For each data point, we obtained a 30-second MP3 sample
through the Spotify APL.

From these data points, we used the CLMR model to extract their
neural features whose dimensionality was further reduced to 2D
for visualization using the UMAP algorithm. Colors were assigned
based on Spotify feature values such as acousticness, energy, va-

© 2024 The Authors.
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Genre Artist Album name

classic Bach A Musical Genius
classic Vivalidi The Four Seasons
rap Eminem The Eminem Show
rap Nas Illmatic

rock/metal | Nirvana Nevermind
rock/metal | Slipknot Iowa

techno Paul Kalkbrenner | Berlin Calling
techno Vitalic Rave Age

country Waylon Jennings | Dreaming My Dreams
country Willie Nelson Red Headed Stranger

Table 1: Composition of the custom test dataset with two iconic
albums for each genre.

lence, loudness, danceability and instrumentalness, to facilitate in-
tuitive interpretation of the distribution. The corresponding feature
results are shown in Figure 3. The results show a clear correlation
between the CLMR-derived features and Spotify’s features. This
demonstrates that the selected model effectively captures musical
qualities that align with industry-recognized attributes.

3.2. Feature Dimensionality Reduction

The CLMR model provides a representative neural vector of
512 elements. We perform a comparative evaluation of various
dimensionality-reduction methods to find a suitable approach to
reduce the number of features. Several works [FIB*14; DIPJ21;
HZLY?22] demonstrate that employing fewer but more representa-
tive dimensions than the original high dimensional vector in star
glyphs greatly improves not only the computational efficiency but
also their effectiveness across a spectrum of tasks. Aiming to re-
tain the comprehensive nature of the data, we reduce the dimen-
sionality to eight, which might seem arbitrary but is well motivated
when opting for a star-shaped glyph, which will be discussed in
Section 3.3.

We focus on identifying a method to effectively preserve data
clustering and explored five algorithms for their ability to main-
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Figure 3: Examples of 2D UMAP embeddings of extracted CLMR-
derived neural features colorized with different Spotify features:
acousticness (left in the 1°' row), energy (right in the 1°' row), va-
lence (left in the 2™ pow), loudness ( right in the 2 yow), dance-
ability (left in the 3™ row), and instrumentainess (right in the 3™
row).

tain data point similarities with its original high-dimensional repre-
sentation: PCA [Pea01], t-SNE [VH08] and UMAP,and two other
more recent algorithms developed based on t-SNE and UMAP, re-
spectively: TriMap [AW19] and PACMAP [WHRS21].

To evaluate the preserved similarity of the reduced 8-
dimensional space from the original 512-dimensional space, we
calculated cosine similarity matrices for both spaces. We present
the detailed statistics of the cosine similarities with the five assessed
methods in Table 2.

Among the algorithms, t-SNE performed below our expecta-
tions, possibly the projection to an eight-dimensional space was
off its optimal usage scenario. UMAP and PCA showed substan-
tially better performance than TriMap and PaCMAP. Due to its
non-linearity UMAP, outperforms PCA in maintaining data point
similarities, while having acceptable computation cost, which made
it our choice. Optimizing UMAP’s hyperparameters (nearest neigh-
bors=15, minimum distance=0.2 for normalized embeddings) fur-
ther improved the results.

Method Mean | Median | Std Min Max

Time/s

PCA 0.952 | 0975 0.065 | 0.013 | 0.991 | 3

t-SNE 0.179 | 0.185 0.084 | -0.161 | 0.373 | 4523

UMAP 0.962 | 0.963 0.009 | 0.889 | 0.983 | 49

PaCMAP | 0.129 | 0.163 0.127 | -0.257 | 0.335 | 28

TriMap 0.127 | 0.173 0.138 | -0.273 | 0.352 | 38

Table 2: Statistics of the kept similarity for feature vectors reduced
from 512 to eight dimensions for five different algorithms.

3.3. Glyph design

Glyphs, often composed of various geometric elements and vi-
sual channels, are capable of encoding multiple data dimensions
simultaneously [Mun14]. This characteristic makes them particu-
larly suitable for high-dimensional data visualization [KKG*20]
and tabular data representation [BKH21]. Despite their utility,
the design space for glyphs remains vast and largely unexplored
[BKC*13]. Owing to its simplicity, versatility, and effectiveness
in encoding multivariate observations and facilitating visual data
comparison, we rely on the star glyph [Fri91; FIB*14; KE22]. To
enhance expressiveness and ease of comparisons, we opted for a
contour plot instead of a whisker plot, as suggested by [Pal99].
Hereby, shape is incorporated as a significant feature. Our design
considered various elements, dimension ordering, categorization
via colors, and shape emphasis by curvature, where some redun-
dant encoding further eases shape distinction. Here, we detail our
design decisions.

Dimension ordering The arrangement of variables on the axes of
star glyphs significantly influences their shapes. The same data-
point can be displayed as very different shapes when it is mapped
in different orders according to Klippel et al. [KHWO09]. Finding
the best order for variables is complex and depends on the analysis
goal, but they observed that showing major differences on the main
axes helps users identify shapes more quickly. Consequently, we
sort the dimensions according to variance of the data.

Figure 4 shows the effect on our final glyphs before and after
sorting the dimensions for seven heavy metal songs. They look very
alike before and quite distinct after reordering.

(a) Dimension unordered

(b) Dimension ordered on variance

Figure 4: Comparison of unsorted (upper) and sorted (bottom) the
axes of our glyph on variance. It is very hard to detect differences
among the icons without axis sorted. In the bottom raw, after sort-
ing the axis, we can detect small differences between the icons.

© 2024 The Authors.
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Figure S: Influence of curve parameters: The x-axis varies the con-
trol distance, while the y-axis adjusts the direction and strength.
The left image demonstrates the impact of parameter adjustments
on curve construction, and the right image illustrates how curve
parameters affect an 8-dimensional star shape.

Dual colour As color can be a good indicator for distinguishing
categorical data [Mun14], we use color prominently for the most
distinctive dimensions, hereby making the implicit classification
explicit. We adopted the automatic color mapping of Kolhoff et al.
[KPLO8], which assigns six features to two RGB colors. Originally,
we considered the first six dimensions, but for reasons explained
below (‘Curvature’), we chose the first three dimensions and di-
mensions five through seven to be mapped to RGB components.
This is shown in Figure 6 (left). We designed a distinct inner and
outer glyph shape to receive these two colors, by superposing the
glyph at different scales. The scale is chosen to ensure that both ar-
eas are balanced. The color mapping results can be seen in Figure 6
(right).

Curvature As curvature is considered a pre-attentive visual stim-
ulus [BKC*13], we leverage it to expand the variety of shapes and
increase the expressiveness of our proposed glyph. While Klippel
et al. [KHWO09] noted that distinctive shape features can speed up
classification, they also cautioned that strong changes of shape may
lead to a wrong impression of dissimilarity. For this reason, we
chose to map dimensions four and eight, which were not yet redun-
dantly encoded by color.

Specifically, the 4th dimension dictates the curvature’s direction
and strength. The 8th dimension, with the least variance, deter-
mines the positioning of control points relative to the line segment
endpoints. An illustration of the influence of these two parameters
on a curve can be seen in Figure 5 (left).

A limitation of this mapping is that when the 4th dimension is
close to zero, the impact of the 8th dimension is less noticeable.
Given that the eighth dimension has the lowest variance, we con-
sider this an acceptable shortcoming. An illustration of this singu-
larity can be seen in Figure 5 (right), where the effect of the curva-
ture settings can be viewed on an 8D star shape.

To ensure clarity and prevent overly complex shapes, we em-

ployed an intersection detection method to adjust curvature strength

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

Numbers indicate n* most variant dimension of embedding
Blue test indicates redundant mapping

Tgmon | * ‘ ‘

(a) Icon for values: (b) Icon for values: (c) Icon for values:
110,05,05,05,05,05,05,05] (05,05,10,05,05,05,05,05] [05,10,05,05,05,05,05,05]

b

(e) Icon for values: (f) Icon for values: (g) Icon for values:
05,05,05,05,05,10,05,05] [05,05,05,05,10,05,05,05] [05,05,05,05,05,05,10,05]

(d) con for values: (h) Icon for values:
05,05,05,10,05,05,05,05) [05,05,05,10,05,05,05,10]

5 Seniaenns

Figure 6: The proposed variable mapping order along the axis of
the star glyph (left) and the influence of each parameter with re-
dundant encoding (Initially all 0.5, then we vary one parameter at
a time (right).

and avoid intersecting lines, ensuring a coherent and interpretable
glyph design. We confined curvature direction and strength to a
range of [-0.3, 0.3] and control point distances to [0.3, 0.6]. This
configuration range avoids shapes that appear to have more line
segments than intended.

Redundant Encoding As indicated, our glyph design contains re-
dundant coding [Fucl5] by design. As the ideal mapping of data
to star glyphs remains an open problem, encoding the important
variables multiple times can significantly enhance glyph expres-
siveness and distinctiveness, bolstering visual search effectiveness.
In our case, it also makes the design suitable for individuals with
color vision deficiency.

Our scheme employs a dual encoding for each variable. It is al-
ways represented as a component of the glyph’s shape, but also as a
glyph’s color or curvature. To judge the effectiveness of the result-
ing glyphs, we illustrate several representations in Figure 6(left)
and show how each parameter influences the glyph in Figure 6
(right). The design is carefully evaluated in Section 5.

4. Interface

We introduce a new search interface that incorporates our glyph
definition and interaction features to support the user. It has been
built as a web application, accessible at http://musicons.
io/. Involving a test database of 10K song snippets that were
randomly selected from the Spotify Dataset provided by Figueroa
[Fig23], which contains more than 1.2M song samples. The prin-
ciples of our glyph-based design are inherently flexible and can be
adapted to mobile platforms. Nevertheless, we first chose a desktop
interface for our Musicon system to better control its evaluation.
Typically, the use of a desktop system ensured a larger display area
and precise input capabilities for a detailed glyph-based visualiza-
tion and interaction. It also facilitated the user study, as measur-
ing user engagement and satisfaction was eased, as we could as-
sume that people are familiar with the hardware. Designing touch-
friendly controls and effectively managing visual complexity on a
small screen of a mobile device remains promising future work.


http://musicons.io/
http://musicons.io/
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4.1. Customized icon

For an initial expression, we randomly selected 48 icons from the
results. As can be seen in Figure 7, the icons reveal the intended
expressiveness and display a wide variety of shapes and colors.

Figure 7: Customized icons: 48 randomly selected icons from the
results.

4.2. Search-by-icon

The search-by-icon tool allows users to start with the icon of a pre-
ferred song and then explore other songs in the proximity, akin to
a reverse search mechanism. This concept draws inspiration from
Knees et al. [KA16], who explored audio search through the visu-
alization of sound mental images.

The interface for search-by-icon can be seen in Figure 8. It fea-
tures eight adjustable sliders, corresponding to the glyph dimen-
sions. The representation is updated in real time, as is the list of the
most similar songs, which enables users to explore the music space
interactively.

We use the cosine similarity to the user-generated icon and a
comparison between the input and 10K vectors of songs in the
database only takes milliseconds. It is done whenever sliders are
adjusted. The ten most similar songs are then presented to the user.

4.3. Playlist sorting

Kolhoff et al. [KPLO8] introduced two sorting methods, 1D and
2D, by applying PCA on icon parameters. We explored various ap-
proaches within our dataset and found that UMAP embeddings sur-
passed PCA in performance.

Specifically, we initiated our process by converting the dataset
into an 8-dimensional (§8D) UMAP embedding, subsequently trans-
forming the resulting data into a 1-dimensional (1D) UMAP em-
bedding. Although a 2-dimensional (2D) layout was considered,
it introduced distortions when attempting to achieve the compact-
ness of a 1D layout. Furthermore, the 1D layout better aligns with
the format of song lists familiar to users of streaming applications,
thus leading us towards a 1D embedding. Utilizing the 8D embed-
ding initially maintains greater coherence with the space utilized

Songs whose icons are most similar
to the icon you have made:

to listen them)

Drift Into Night

Theta Wave Orchestra

Out of Body Experience  Theta Wave Orchestra

M11 - Incident. Ryuichi Sakameto

Dakota Suite:

Figure 8: The interface for search-by-icon. The icon parameters
are indicated with a dotted line and the icon is updated in real-
time when the parameters are changed with the sliders (left). While
the users drags the slider, the most similar songs are immediately
updated and allow to be listened(right).

for our glyphs, as demonstrated in Figure 9, and reduces compu-
tational workload relative to the original 512 dimensions. While
sorting within diverse playlists produces variable sequences, our
method consistently positions similar icons in close proximity. This
arrangement enhances user navigation and experience, outperform-
ing standard PCA arrangements.

4.4. Enhancing icon contrast

A global embedding will enhance inter-genre distinctions, while
reducing intra-class variations. To amplify local contrast of icons
when exploring, for example, homogeneous playlists of similar
songs, we employed a min-max scaling to re-normalize the icon
features’ range of the selected subset to [0, 1]. Furthermore, users
are offered the option to tune the percentage of contrast linearly
between the original and fully normalized embeddings. This main-
tains a link to the global representation and allows for applying a
gradual contrast. Figure 10 illustrates the effectiveness of this fea-
ture in a subset of jazz music, by gradually increasing the local
contrast from 0% to 100%. As an example, the song zero and the
song four in this list exhibit very high similarity in audio data -
both share instruments, mood, and a prominent solo with the same
instrument. At overview scale, the icons appear almost identical,
as expected. By tuning up the contrast, the resolution of the icon
parameters is locally amplified and the difference becomes more
apparent.

5. Evaluation

Given the subjective nature of visualizing and perceiving music,
our hypothesis and experimental design are evaluated through an
exploratory user study. We aim to conduct two types of evaluations:
a comparison with alternative methods and an assessment of the
proposed features.

© 2024 The Authors.
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Figure 9: Comparative visualization of three sorting methods.
From upper to bottom: icons sorted on 1D UMAP embedding of
original 512D features, icons sorted on 1D UMAP embedding of
the 8D UMAP embedding of the 512D features, and icons sorted
on 1D PCA of the 8D UMAP embedding of the 512D features.

We wanted to compare our work with Kolhoff et al. [KPLOS],
who introduced content-based music icons. Unfortunately, after
contacting the authors, we learned that the music resources and
implementation are no longer available. Hence, we can only infor-
mally compare the two solutions. Our work benefits from deep fea-
tures, a more detailed mapping of information on the glyph shape,
as well as an improved robustness and inclusivity for color vision
deficiency (CVD) by redundant encoding. Furthermore, we intro-
duce a reverse search, which broadens the utility of music icons.

We target the evaluation of our proposed features: from the ef-
fectiveness of the icon to a larger system-evaluation. We used the
10K dataset due to its availability, although the system can be ex-
pected to handle larger song databases with minor optimizations in
the implementation.

We targeted a participant demographic of ‘non-expert but gen-
erally computer-literate’ adults [CW11]. To reduce response bias,
participation was anonymous. Using an a-priori sample size calcu-
lator with an expected medium effect size (d = 0.5), we determined
that a minimum of 27 participants would achieve a statistical power
of 0.8 and a significance level of 0.05, assuming analysis via paired
samples t-test for certain tasks. We garnered 38 responses in the

© 2024 The Authors.
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Figure 10: Local-contrast icons for a playlist of jazz music with
contracts of 0%, 25%, 50%, 75%, and 100%.

evaluation, with a roughly equal number of men and women and
an age distribution ranging from 20-29 to over 70 years. To con-
duct the study, we developed a web interface that provided each
participant with task instructions, managed the flow and timing,
randomized the order of tasks, and collected the data. The study
was conducted remotely to minimize the response bias caused by
our presence. Additional details regarding the evaluation are given
in the supplementary material.

5.1. Customized icon

Visual clustering. This is a classic ‘free-grouping’ or ‘free-
sorting’ task, widely used in the field of psychology [BB16]. This
test assesses the effectiveness of the icons in representing feature
similarity and the extent of user consensus on this aspect. Partic-
ipants formed clusters from 60 icons based solely on visual cues,
without song titles or additional metadata information. They were
allowed to use any number of clusters and set aside non-fitting
icons.

To ensure that there is a diversity in the selection yet still the
possibility to make clusters, we sampled 10 data points from six of
the clusters created by applying a k-means clustering algorithm on
the original 512 dimensional embedding (k = 10). Each participant
worked with the same set of icons but their presentation was in a
random order.

To assess user consensus on clustering, we computed a co-
occurrence matrix of participant-generated clusters and a cosine
similarity matrix of the feature vectors, both shown in Figure 11.
Initial observations suggest a strong user agreement on the clus-
ters, with the co-occurrence matrix displaying notable resemblance
to the similarity matrix. To quantitatively evaluate this relationship,
we calculated the pairwise Pearson correlation coefficient, result-
ing in a value of 0.6. This indicates a moderate linear correlation,
suggesting a reasonable level of agreement among users in their
clustering decisions.

Outlier Detection. This test, extending from the visual clustering
test, utilizes participant-generated clusters to evaluate the glyphs’
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effectiveness in representing music similarity and facilitating out-
lier detection. For each participant, we randomly selected four
songs from one cluster and one song from a different cluster, pre-
senting these five songs in a random order. Participants were then
asked to identify the song that sounded distinct from the others.
This process was repeated three times for each participant.

0 Co-occurrence matrix Similarity matrix
P = =2

— 1.0
30 10
0.9
201
20
30 0.8
10 40 07

0 20 40

Figure 11: Co-occurrence matrix of the clusters made by partic-
ipants (left) and a cosine similarity matrix of the feature vectors

(right).

The descriptive statistics of the results is shown in Table 3. Given
that random guessing would yield an expected recognition rate of
0.2, our observed mean recognition rate of 0.7451 represents a con-
siderable enhancement. With a p-value lower than 0.00001 and an
effect size of 2.375 (Cohen’s d), this improvement is statistically
substantial.

Mean | Median | Mode | Std Variance
0.745 | 0.667 0.667 | 0.230 | 0.053

Table 3: Descriptive statistics of the recognition rates obtained for
outlier detection.

Generalization, Contrast and CVD Robustness. This test is set
up as a matching-to-sample task in the same manner as [FIB*14].
It aimed to assess three aspects: the alignment of the ‘most simi-
lar’ icon with the data point of highest cosine similarity, indicat-
ing the icon’s effectiveness in representing high-dimensional data;
the impact of a contrast-enhanced icon version on task completion
time and accuracy in identifying the most similar icon; and the icon
design’s robustness against CVD, evaluated through task time and
accuracy using a CVD simulation.

Participants were shown nine similar icons, including one target
icon, and asked to identify the icon that is most similar to the tar-
get. This test was conducted across three rendering modes: the de-
fault design, a contrast-enhanced version with 100% contrast, and
a color-blind mode simulating deuteranomaly the most common
type of CVD. Each participant completed the task nine times, three
times per rendering mode. The descriptive statistics of recognition
rates obtained for these three modes is shown in Table 4.

With a random selection, the expected recognition rate is merely
0.125. Our study, however, demonstrates a marked enhancement
with mean recognition rates more than 0.706 for all three modes.
This substantial increase suggests that participants are better at

Mode Mean | Median | Mode | Std Variance
Default 0.706 | 0.750 1.000 | 0.277 | 0.077
Contrast | 0.785 | 1.000 1.000 | 0.271 | 0.074
CVD 0.741 | 0.667 0.667 | 0.231 | 0.053

Table 4: Descriptive statistics of recognition rates obtained for
matching-to-sample with the ‘default’, ‘contrast’, and CVD mode
of the icon.

identifying the icon that most accurately corresponds to a position
within an 8-dimensional space. To validate these findings, we em-
ployed as ‘default’ mode a one-sample, one-tailed t-test, which in-
dicated an essentially zero p-value and a pronounced effect size of
2.100 (Cohen’s d). These results robustly confirm the effectiveness
of our approach.

We observed that ‘contrast’” mode outperforms ‘default’ mode
with a higher mean recognition rate and a faster selection process,
while, for the CVD mode, we discovered no obvious differences be-
tween the ‘default’ and CVD modes. A one-way ANOVA test con-
ducted across all three rendering modes yielded a p-value of 0.450,
indicating that rendering mode has no noticeable impact on perfor-
mance in the matching-to-sample task. This outcome suggests that
each icon rendering mode performs comparably well, affirming the
robustness of our icon to CVD. The effectiveness of our redundant
encoding strategy in enhancing recognition and matching accuracy
is thus supported by these results.

5.2. Search by icon

The test aimed to assess the efficacy of our ‘search-by-icon” method
for users. Participants were shown a target song with its custom
icon and the search-by-icon interface shown in Figure 8. They were
tasked with using the interface to imitate the target icon and then
retrieve the three songs most similar to the target one. Following the
test, participants completed the System Usability Scale [CW11] to
evaluate their experience with the interface.

Imitated icon and retrieved songs Cosine similarities between
user-generated and target icon vectors, presented in Figure 12 (left),
with a high mean (0.989) and median (0.993), indicates that with
vectors exhibiting a cosine similarity above 0.975 to the target,
most users accurately replicated icons. Furthermore, the average
cosine similarities between the target icon vector and the top three
selected songs, detailed in Figure 12 (right), reinforce the precision
of these imitations, highlighting the effectiveness of participant se-
lections in aligning closely with the target icons.

System Usability Scale (SUS) The SUS comprises of ten state-
ments, each evaluated using the Likert Scale, which ranges from
one for ‘strongly disagree’ to five for ‘strongly agree’. The details
of this dataset can be found in the supplementary material.

Based on the feedback, we computed the SUS scores, as illus-
trated in Figure 13(left), with the corresponding performance in-
terpretations presented in Figure 13 (right). We counted 13 ‘bad’
results, 7 ‘mediocre’, 11 ‘good’ and 6 ‘excellent’. We recognize

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



Xuejiao Luo, Vera Hoveling & Elmar Eisemann / Musicon: Glyph-Based Design for Music Visualization and Retrieval 9of 11

Cosine similarity target and custom icon Avg cossim target and retrieved songs

125 18
) 16
10.0 14
12

75 10
50 8
- 6
25 4
2

0

0.0
0.875 0900 0925 0.950 0.975 1.000

=}

.875 0.900 0.925 0.950 0975 1.000

Figure 12: Cosine similarities between user-generated and target
icon vectors (left), illustrating how closely users can imitate an
icon. The average cosine similarities between the target icon vector
and the top three selected songs (right), evaluating how effectively
users can retrieve similar music using this tool.

Scores on the System Usability Scale Interpreted SUS Scores

8
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Figure 13: SUS Scores (left) and its corresponding interpretation
(right). A score above 80.3 is interpreted as ‘excellent’, scores be-
tween 68 and 80.3 as ‘good’, scores between 50 and 68 ‘mediocre’,
and anything below 50 ‘bad’.

that flattening the user experience into such a score is a gross sim-
plification. Nonetheless, we observe that a majority, specifically 25
out of 38 participants, demonstrates a willingness to embrace our
model.

5.3. Search by playlist

This test aimed to assess the icon’s effectiveness and sorting proper-
ties within a playlist context, comparing it against album art, which
is typically used in streaming services. Participants were asked to
select their top three songs from playlists featuring both album art
and our custom design, with each format presented twice. We as-
sessed the similarity between the top three selections and the target
vector, time-on-task, plays per task, and additional insights from
open-ended questions.

Retrieved songs Average cosine similarities between the target
icon vector and the top three selected songs are presented in Fig-
ure 14, with descriptive statistics in Table 5. Both methods cover
similar ranges of cosine similarities, but our method facilitates
slightly higher similarity retrieval (one-tailed paired-samples t-test:
p =0.03, Cohen’s d: 0.469), aligning with the icon’s intended sim-
ilarity representation.

Time-on-task The time-on-task per participant for both album art
and custom icon methods are detailed in Figure 15, with descrip-
tive statistics provided in Table 6. A notable reduction in average

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
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Figure 14: Average cosine similarities between the target icon vec-
tor and the top three selected songs, comparing between album art
(left) and our custom icon (right).

Icon Mean | Median | Std Var Min Max

Album | 0.955 | 0.967 0.033 | 0.001 | 0.858 | 0.991

Custom | 0.938 | 0.945 0.036 | 0.001 | 0.851 | 0.993

Table 5: Descriptive statistics of the data as displayed in Figure 14.

completion time, exceeding one minute, was observed. A left-tailed
paired t-test confirmed these findings with p = 0.00201 and an ef-
fect size of 0.473 (Cohen’s d).

Time-on-task for album art (in minutes) Time-on-task for icon (in minutes)

6 6
4 4
2 2

0
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Figure 15: Completion times of time-on-task with album art (left)
and our custom icon (right).

Icon Mean | Median | Std Min | Max
Album 6:25 4:49 3:45 | 1:08 | 14:12
Custom | 4:44 3:54 3:11 | 0:39 | 12:14

Table 6: Descriptive statistics of the data as displayed in Figure 15,
formatted as mm:ss.

Songs played per task Figure 16 and Table 7 display the number
of songs played per task per participant for both album art and the
custom icon, showing similar ranges but a notably lower mean and
median for the custom icon. A paired t-test confirms this difference,
with p = 0.00001 and an effect size of 0.931 (Cohen’s d).

Icon Mean | Median | Std Var Min | Max
Album 103.9 | 113.5 55.9 | 3121.1 | 10 222
Custom | 57.7 40.0 424 | 1796.8 | 7 192

Table 7: Descriptive statistics of the data as displayed in Figure 16.
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Figure 16: The number of songs played per task per participant for
both album art (left) and the custom icon (right).

Open Questions Upon study completion, participants responded
to three open-ended questions regarding their playlist task expe-
rience. The detailed questions and corresponding analysis can be
found in the supplementary material.

Our tool’s effectiveness was confirmed through strong quantita-
tive results, notably speeding up task completion by over a minute
compared to album art presentations and reducing the number of
songs participants needed to listen to by almost 50%. When using
our icon, selections tended to have similar or slightly higher co-
sine similarity to the target song, suggesting the icons’ visual cues
enhanced both the speed and quality of decision-making.

While many participants valued our icon for its capacity to indi-
cate similarity, some expressed a preference for album art due to its
contextual and cultural insights. Acknowledging album art’s value
in certain situations, we argue that our icon meaningfully enhances
user experience by addressing the variability of songs within an
album. Further, our evaluation focused on the effectiveness of our
contributions. In a practical system, we would envision the use of
our icon in conjunction with potential metadata (including album
art) if available.

An exciting direction for future work would be exploration for
semantic latent representations and descriptive dimension map-
pings. Unfortunately, this is not straightforward, as it is unlikely
that all aspects could be well captured in this way, e.g., what di-
mension would mean "adding a piano" or "adding strings"? Never-
theless, some meta information could be used to augment our so-
lution. In a practical system, we would certainly argue for keeping
genre information available for the user in selections and search.
We refrained from doing so, to show the effectiveness of the auto-
matically derived features and our visualization solution, which is
already able to capture a considerable amount of information.

6. Conclusion

In this paper, we introduced a novel icon-based visualization ap-
proach for enhancing music discovery in streaming services by
mapping latent characteristics of music to a novel glyph design.
Our evaluation demonstrated that our method meaningfully im-
proves user engagement and efficiency in music exploration, high-
lighting the potential of incorporating such visual cues into stream-
ing platforms. The positive outcomes suggest a promising direction
for further research in music visualization and user-interface de-
sign to refine and personalize the music-discovery process. Future

Xuejiao Luo, Vera Hoveling & Elmar Eisemann / Musicon: Glyph-Based Design for Music Visualization and Retrieval

development in this intersection of music information retrieval and
visual interaction could potentially transform user experiences in
digital music environments.
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