
Non-Uniform Tile Wave Function Collapse
Rolf Piepenbrink, Rafael Bidarra

Computer Graphics and Visualization Group
Delft University of Technology

Delft, The Netherlands
Email: rpiepenbrink@proton.me, r.bidarra@tudelft.nl

Fig. 1: A three-dimensional forest terrain generated with nutWFC.

Abstract—Procedural Content Generation methods enable the
creation of varied content algorithmically. One such method is
Wave Function Collapse (WFC), a tile-based local constraint
solver commonly applied to texture, map and level generation
for grid-based content; it is able to create varied output from
the same set of rules, usually derived from an input sample.
However, a glaring limitation of WFC is that it only operates on
tiles of the same shape and size. We propose Non-Uniform Tile
Wave Function Collapse (nutWFC), an extension of WFC that
supports multi-cellular tiles with varying shapes and sizes, so-
called Non-Uniform Tiles (NUTs). Familiar examples of such tiles
can be found in LEGO® and Tetris. The algorithm guarantees
NUT shape and size preservation even under WFC’s Overlapping
Model in three dimensions. We show that nutWFC is a super-set
of WFC that harmonizes strict NUT shape and size constraints
with WFC’s output diversity without significant performance
penalties. We illustrate the expressive power of nutWFC with
a few results that explore the advantages of NUTs and would
therefore not be feasible with WFC.

Index Terms—Wave Function Collapse, non-uniform tiles,
procedural content generation, constraint solving

I. INTRODUCTION

WFC is a local constraint solver that has been a topic
of great research interest since its introduction in 2016 by
Gumin [1]. The power of WFC lies with its ability to quickly
generate diverse grid-based output from the same input: either
i) a set of tiles and a set of adjacency constraints, specifying
which tiles may be adjacent, or ii) a grid-based texture example
from which the tile set and constraints are inferred.

Most approaches deploy WFC on rectangular or cuboid tiles
of the same size, spanning the same number of cells in a

single grid; the tiles must thus be uniform. However, much
can be gained from tiles with varying shapes, spanning multi-
ple cells, which we call Non-Uniform Tiles (NUTs). NUTs
allow WFC to enter currently unexplored domains where
tile variety, shape and size preservation is crucial. This can
include brick-by-brick construction of LEGO® models, Tetris-
inspired textures [2] and varied three-dimensional terrains.
Unfortunately, standard WFC cannot achieve this, due to the
following limitations:

1) it is unable to represent and handle NUTs and cannot,
therefore, guarantee the preservation of a NUT’s diverse
shape and size.

2) even if this obstacle were overcome, no mechanism is in
place for representing and operating on NUT adjacency
constraints either. Contrary to constraints between uni-
form tiles, NUT adjacency constraints are ambiguous:
there can be multiple configurations that satisfy such
constraints.

3) WFC can learn from a grid-based input only if it
assumes that every tile occupies a uniform grid pattern
(e.g. 1×1 or 3×3); however, it cannot distinguish NUTs
within the input (by their own non-uniform nature)
which, in turn, prevents WFC from preserving NUTs’
properties.

To overcome these issues and provide access to the creative
freedom and expressiveness of such new domains, we present
Non-Uniform Tile Wave Function Collapse (nutWFC), an
extension of WFC capable of supporting NUT sets. Most no-



tably, nutWFC can guarantee NUT shape and size preservation
under WFC’s Overlapping Model. This means combining the
essential WFC capacity of learning adjacencies from an input
example with the consistent use of only the tiles included in the
given NUT set. As a reminder, under the Overlapping Model,
standard WFC learns allowed tile adjacencies by scanning with
a sliding window over the input grid.

The nutWFC algorithm is the main contribution of this
paper. It was recently developed as a part of our earlier work
Expressive Wave Function Collapse [3], where it was shown to
truly be a super-set of standard WFC. The foundation of the
underlying structure of NUTs lies with uniquely identifying
its single-cellular elements. In other words, by disabling this
identifier uniqueness within a NUT, standard WFC emerges.

In this work, we show how nutWFC supports NUTs and
how it can be applied under WFC’s Overlapping Model. To
support the above claims, we illustrate the application of
nutWFC to terrain and architectural structure generation, based
on dedicated NUT tilesets.

II. RELATED WORK

WFC’s release by Gumin in 2016 attracted significant
attention from researchers and artists alike [1]. Gumin’s WFC
repository currently features dozens of variations, including
adaptations, optimizations, generalizations and implementa-
tions to name a few [4]–[8]. WFC can also be found in
commercial games, such as Bad North [9], Townscaper [10]
and Caves of Qud [11]. While WFC rests on the same
foundations as Merrell’s Model Synthesis published years
prior [12], WFC had a larger impact, especially among game
developers [7]. Nonetheless, Merrell’s contributions remain an
important source of inspiration.

Several researchers have addressed tiles spanning multiple
cells for WFC. Stålberg’s Bad North features modules that
can span multiple cells in a grid [9]. Stålberg acknowledges
the useful properties of such large modules, such as allowing
for smooth transitions. To solve the issue of formulating
the numerous tile configurations, he derives the modules’
adjacency constraints based on their vertices at the edges of
the module: if they match, adjacency is allowed.

Moreover, Newgas’ Tessera [6] and Piepenbrink’s Expres-
sive Wave Function Collapse [3] tackle multi-cellular tiles
by subdividing them into uniquely identified single-cellular
components. By enforcing constraints between these elemen-
tary components, the tile’s structure is maintained. Newgas
performs this method on multi-cellular tiles, which he calls
big tiles through the addition of pre- and postprocessing. Big
tiles consist of a connected arrangement of single-cellular
components called cubes. In order to determine the adjacency
constraints between big tiles, Newgas opts for manually paint-
ing the big tiles’ exposed faces.

Two tiles are allowed to be adjacent if their colored edges
match. However, specifying only these constraints is insuf-
ficient to rule out the overlap of non-rectangular big tiles.
If the colors of two edges match, that does not mean that
the other components — which must be collapsed into as

well due to the structure of the tile — do not overlap.
Consequently, this method is prone to conflict and is likely
to often run into the same problems, as the irregularity of
the tiles increases. Although a valid tiling may be found,
it will be at the high cost of frequent conflict handling.
Alternatively, one could choose to paint the edges so that
overlap is reduced. However, determining this manually, as
Tessera requires, can be an increasingly challenging task for
complex big tile configurations.

While Newgas’ approach is effective for the Simple Tiled
Model, it largely lacks the capabilities for operating on the
Overlapping Model because it does not learn big tile adjacency
constraints from a grid-based input. Instead, Tessera requires
manual user annotations to make them explicit. We can
therefore conclude that his method is strongly compromised
for use under the Overlapping Model.

Piepenbrink, in turn, generalizes Newgas’ approach to
multi-cellular tiles of any shape, where the adjacency con-
straints between the tiles are expressed in terms of the tile’s
single-cellular components. Rather than employing (manually)
colored edges to infer constraints, Piepenbrink extrapolates
adjacency constraints on multi-cellular tiles in two ways. The
first method adheres to the same principles described in his
earlier work with Bidarra [2]. Given an adjacency constraint
between two multi-cellular tiles for a given direction, his
algorithm computes the positions of two tiles such that (i) two
single-cellular components are adjacent in the corresponding
direction, and (ii) no intersection of single-cellular components
of the two tiles is present. From such a position, the adjacency
constraints on single-cellular components are obtained.

In its second method, Expressive Wave Function Col-
lapse [3] features learning adjacency constraints from an input
example model. Since this input does not explicitly define the
composition of its multi-cellular tiles, the NUT set used in
the input is also expected as a secondary input. This enables
identifying the single-cellular components in the input, thereby
allowing for inference of adjacency constraints. Through these
two methods, multi-cellular tiles are not restricted to rectangles
(i.e. the shape of their bounding box), and may be an arbitrary
composition of connected single-cellular components. For the
Simple Tiled Model, Expressive Wave Function Collapse uti-
lizes both methods just described; for the Overlapping Model
it uses the second method only.

An orthogonal problem to that approached here regards the
generation of large patterns or structures spanning multiple
grid cells in the output, but always based on a uniform
tileset. Karth et al. [13], for example, proposed a combination
of WFC with a a vector-quantizing variational autoencoder
(VQ-VAE) to generate game maps based on one input map.
Once trained, this approach is able to output a variety of
maps, possibly containing several large structures. However,
the WFC algorithm itself, which is applied in latent space to
a grid of integer indexes, operates on a simple grid with a
uniform tileset. Bateni et al. [14] propose a modified WFC
to improve the resemblance between input and output, based
on a context-sensitive heuristic for choosing the next tile to



(a) Output generated by WFC (left), not preserving the shape and
size of the red square, and by nutWFC (right), preserving it. Color
tone variations are added to reinforce each individual cell’s character

(b) The input used for the red square example.

Fig. 2: An example portraying the effect of uniquely identify-
ing atoms of the red center NUT.

collapse. This heuristic is shown to perform better than that
in Gumin’s original algorithm. Again, they always use either
uniform (1×1) tiles or overlapping (3×3) patterns on a grid.

From a different perspective, Langendam and Bidarra’s mi-
WFC features stamp-like functionality [15]. Here, the designer
is able to manually create a group of tiles, called a template,
and later reuse it, by placing instances on the grid. One of the
main advantages of this approach is that it offers the user
control on the design process. This is akin to how NUTs
can be perceived: a pattern of small tiles collapsed at once.
Likewise, this notion extends to Alaka and Bidarra’s HSWFC,
following a hierarchical approach for the WFC tile set [16].
Both approaches share in our goal of better capturing the
semantics of patterns and offering a tighter design control [17].

III. NON-UNIFORM TILE FUNDAMENTALS

There are plenty of domains where multi-cellular tiles with
shape and size preservation are required. However, WFC is
currently unable to cope with such heterogeneous tile sets.
Consider the example shown in Figure 2 and suppose the
central two-by-two red square is a tile whose shape and size
must be preserved. With WFC, each single cell of the tile is
considered equal, rendering it unable to preserve the tile. With
nutWFC the red square NUT in the input remains intact. This
notion extends to arbitrarily shaped tiles.

In this paper we introduce nutWFC, a major WFC extension
capable of supporting NUTs, whose shapes and sizes must
preserved. To achieve this, two challenges must be overcome:
i) storing NUT information at cell level and ii) expressing
adjacency constraints between NUTs in a form usable for the
WFC algorithm.

nutWFC solves the former challenge through splitting a
tile into uniquely identified single-cellular units, which we
call atoms (see Subsection III-A). To overcome the second
challenge of NUT adjacency ambiguity (see Figure 3), we

Fig. 3: NUT adjacency constraint ambiguity shown in 2D. The
”H” tile can be adjacent to the ”W” tile in multiple ways per
direction (i.e. N(orth), E(ast), S(outh) and W(est).

apply the aforementioned mechanism on the input grid, so
that the adjacency of two NUTs can be expressed in terms
of adjacency of their atoms (see Subsection III-B). As we
will show, this can be done in the initialization phase of the
Overlapping Model, enabling compatibility with WFC with
minimal changes.

For the remainder of this section, we use the following
notation:

• For a given vector v , the i-th element of the vector is
referenced with vi.

• To reference properties of entities, we use dot notation.
The extent of a given entity x is represented as ∆. For
instance, to reference the i-th element of x’s extent, we
write x.∆i.

• Matrix cells will be referenced following array notation,
i.e. the element at cell x, y of a matrix M is denoted as
M [x, y].

• Referring to grid cells is done similarly, where the cell
at coordinate c is denoted as G[c].

• To represent a cardinal direction d̂, we use unit vectors
and say that d̂ = ±êk, where k corresponds to the
cardinal direction’s axis.

A. NUT preservation through tile atomization

The purpose of tile atomization is to split a NUT into
a set of atoms. This allows for differentiation among those
single-cellular units of the NUT, and opens the doors to WFC
compatibility. Before we discuss NUT properties, we introduce
a formal definition of NUTs:

Definition 1 (Non-Uniform Tile). A Non-Uniform Tile
(NUT) is a 3D tile that may span an arbitrary number
of connected grid cells, and has an arbitrary shape
and size that must be preserved. The shape is defined
by a connected arrangement of uniquely identified
single-cellular units called atoms, each with a relative
position within the NUT. The size of the NUT, also
referred to as extent, is the extent of the axis-aligned
bounding box containing those atoms. Formally, a
NUT n has an extent n.∆, and set of atoms n.A =
{a0, . . . , an}.



From this definition, a NUT is an arrangement of atoms,
whose relative positions within the NUT can be mapped
to absolute coordinates within a 3D grid, based on four
observations:

1) Cells are discrete and uniform within a grid.
2) Each cell contains at most one atom.
3) All atoms are single-cellular; they cannot overlap.
4) Each atom has a relative position within its NUT.

Since the atoms are single-cellular and cells are discrete,
we can place the atoms according to their relative positions in
a grid without any atoms overlapping. Each atom’s coordinate
within this grid is called the atom coordinate and is used to
represent the atom’s position. We denote the atom coordinate
of an atom a as a.c. Since each cell can contain at most one
atom, the combination of an atom’s associated NUT’s identifier
and atom coordinate is unique. As a consequence, we can
now distinguish between atoms within the same tile, which is
crucial for NUT placement during the main loop of nutWFC.
For ease of reference, we also assign a unique integer identifier
to each atom. We denote the identifier of an atom a as a.id.
Therefore, we can express a NUT in terms of the atoms within
its extent, which brings us to the same domain as WFC’s grid,
with all its properties and advantages, including its handling
of adjacency constraints.

Step one for NUT preservation is its atomization, yielding
the building blocks that enable shape and size preservation.
Per Definition 1, a NUT’s atom arrangement, and thus its
shape and size, must be preserved. We achieve this through
specifying constraints between its atoms. In the grid of atoms
we mentioned earlier, atoms can be neighbors of one another
in a certain direction. We refer to that neighboring property
as atom adjacency:

Definition 2 (Atom adjacency). Two atoms ai and
aj are said to be adjacent in direction d if aj is in
ai’s neighboring cell in direction d. Atom adjacency
between those atoms is denoted as ai ∼d aj .

Whenever a NUT is placed (or collapsed) in the grid, its
atoms must always occur in the same arrangement. Essentially,
these can be expressed as adjacency constraints among the
NUT’s atoms, which we refer to as inter-atom adjacency
constraints. These constraints will enforce that collapsing one
of the atoms of a NUT requires collapsing all of its other atoms
as well, thereby preserving shape and size. This follows from
the observation that an atom ai with an inter-atom adjacency
constraint with an atom aj in a direction d is not allowed to be
adjacent to any other atoms in that direction. Thus, the atoms
of a NUT are tightly bonded together. Since these relations
are known beforehand, the constraints are determined in the
initialization phase. These inter-atom adjacency constraints are
fully compatible with WFC, since the constraints are expressed
in terms of adjacency constraints between single-cellular units.

B. Adjacency between NUTs

With an individual NUT’s properties preserved and compati-
bility with WFC achieved, we can turn into adjacency between
NUTs. As mentioned, NUT adjacency is ambiguous and not
directly compatible with WFC’s tile adjacency. To overcome
this, we have to clearly define what NUT adjacency entails.
Because we expressed each NUT in terms of its differentiated
atoms, we can use them to define NUT adjacency:

Definition 3 (NUT adjacency). Two NUTs ni and nj

are said to be adjacent in a given direction d, if at
least one atom of ni is adjacent (see Definition 2) to
at least one atom in nj in direction d.

From this definition, the ambiguity becomes clear: there
may be multiple configurations of two NUTs in which their
atoms are adjacent. To express that two NUTs may be adjacent,
we formulate NUT adjacency constraint in Definition 4.

Definition 4 (NUT adjacency constraint). A NUT
adjacency constraint is a constraint stating that two
NUTs may be adjacent along a given direction d,
following Definition 3.

With this knowledge in mind, we can now describe how
these constraints are learned from the input.

IV. CORE NUTWFC ALGORITHM

A. Grid atomization: learning from input

WFC traditionally learns the tile set and adjacency con-
straints from input examples, typically a pixel texture. During
the learning phase, the input is scanned to derive both the tile
set and the adjacency constraints.

However, when that input is build up of NUTs, the NUT set
is evidently prior to the input itself, rather than derived from
it. We, therefore, argue that it is a reasonable requirement to
pass along, as input, both the NUT set and one (or more)
grid example(s) using those NUTs. By ensuring that each
NUTs’ atoms are unique, we are guaranteed to find a valid
configurations of NUTs in the provided input.

Certainly, standard WFC cannot cope with such a hetero-
geneous tileset anyway; but how can nutWFC learn from
such an input? The answer to this is given by the notion
of grid atomization, analogous to the mechanism behind tile
atomization, described in Subsection III-A.

Input grid atomization essentially consists of determining a
NUT’s atom identifier for each of its cell. For this, the cells
in the input grid G can be mapped to a matrix, G′, in which
each cell’s value is the atom identifier of the NUT at that
atom coordinate. For this, grid atomization follows a greedy
sliding window approach, incrementally iterating over all cells
of the input grid, starting at its zero-index. For each cell with
coordinate c in grid G, we overlay a NUT ni with extent
ni.∆ and atoms ni.A such that all atoms aj ∈ ni.A, with
their respective atom coordinates aj .c cover cells c + aj .c.



Fig. 4: Input grid atomization: given a set of atomized NUTs
(left), we overlay and slide each NUT over the grid, to find
a fitting NUT and associate its atom identifiers to the cells in
the grid.

We say that a NUT fits in the input grid at a given coordinate
c, if for all atoms aj of NUT ni, the atom’s identifier equals
the value stored in grid G at coordinate c + aj .c. Figure 4
depicts a high-level illustration of this mapping. By starting
from the 0 coordinate in G and selecting cells incrementally
thereafter, we align the NUTs with this coordinate.

After each successful NUT fitting check on the input grid
G, we map its atoms as well onto the atomized grid G′. For
this, we store the identifier ai.id of an atom ai at c+ ai.c.

Once the input has been atomized, the adjacency constraints
between its atoms (and their respective NUTs) can be derived
for the Overlapping Model, as described next.

B. Patterns for the Overlapping Model

The key for deriving and capturing nutWFC adjacency
constraints between NUTs lies in the notion of a pattern, a
small square portion of the atomized grid G′. A kernel w with
extent w.∆ is used to obtain the patterns from the atomized
grid G′. For this, the kernel slides cell-by-cell over the entire
grid: at each position, one pattern is registered, and kept in
set P = {p0, . . . , pn}. From the definition of the Overlapping
Model, an adjacency constraint between two patterns depends
on how they overlap, hence the minimal size of the kernel is
2.

Pattern adjacency constraints are obtained by overlapping
any two such patterns along a given direction d̂ = ±êk, and
checking their compatibility, as shown in Algorithm 1. Let
pi and pj be two patterns obtained as described above. Each
pattern aggregates a square of atoms, with their identifiers.
Consequently, each atom has a position within the pattern,
which we refer to as a pattern coordinate. Evaluating whether
two patterns are compatible (see line 6 of Algorithm 1), and
their NUTs may therefore be adjacent for a given direction d̂,
involves the following procedure:

1) Position patterns pj and pi such that they fully overlap.
That is, each pattern coordinate ci ∈ pi.C maps to a
pattern coordinate cj ∈ pj .C.

2) Translate pj by d̂; not all pattern coordinates overlap
anymore.

3) For each pair of overlapping pattern coordinates (ci, c′j),
check whether the value at ci equals the value at c′j.

Algorithm 1 Pattern Adjacency Inference

1: D = {d0, . . . , dk} ▷ Set of directions
2: P = p0, . . . , pn ▷ Set of patterns obtained form the input
3: for each pi in P do
4: for each pj in P do
5: for each d in D do
6: if IsCompatible(pi, pj , d) then
7: StorePatternAdjacency(pi, pj , d)
8: StorePatternAdjacency(pj , pi, −d)
9: end if

10: end for
11: end for
12: end for

4) If all assertions pass, pj and pi are said to be compatible
along direction d̂.

One of the advantages of this use of NUTs in nutWFC is that
a small kernel of size 2 can convey much more information
than with standard WFC, due to NUT atomization: the patterns
obtained through input processing contain atom identifiers
rather than tiles. Since each atom belongs to a concrete NUT,
collapsing a pattern on the output grid, and thereby the atoms
in said pattern, will enforce that all other atoms of those NUTs
(possibly outside of the pattern extent) must be collapsed as
well. In other words, atomization facilitates maintaining the
shape and semantics explicitly desired for each NUT.

In addition, patterns containing only atoms of the same
NUT become redundant, since those atom relations are al-
ready enforced through the inter-atom adjacency constraints,
maintained in the atom adjacency matrix. The larger a NUT
is, the fewer patterns are required to represent it (relative to
its size). While this sounds counter-intuitive, it makes sense:
the purpose of a pattern is to contain information on how two
(or more) NUTs may be adjacent in a given context. For a
large NUT, only patterns at its perimeter contain information
on how it touches others NUTs, all other internal patterns can
be ignored.

C. nutWFC for the Overlapping Model

The basic nutWFC algorithm uses the features and prop-
erties described above when extending the standard WFC
algorithm, as shown in Algorithm 2.

During observation, the cell with the lowest entropy is
selected and then collapsed. However, since the domain of the
Overlapping Model is unionized — operating on both patterns
and atoms — collapsing works slightly differently. At run-
time, we must know which cells are collapsed to which atom
within the pattern. Therefore, upon collapsing a cell into a
pattern, we assign it the atom identifier at pattern coordinate
0. Subsequently, a new collapse wave propagates, where all
other atoms belonging to that atom’s NUT are also collapsed.
However, a new challenge arises with this step: immediately
collapsing cells into atoms, rather than according to patterns,
results in a lack of pattern data. To overcome this, we pre-
compute at initialization stage, the table of which patterns



correspond to which atom identifiers. Then, at run-time we
easily retrieve from this table, for each collapsed cell, which
patterns correspond to their atom identifiers. In this way, we
safely restore the correspondence between atom identifiers and
patterns, and avoid including in the pattern adjacency matrix
any patterns containing only atoms belonging to the same
NUT.

D. Pattern elimination at the grid’s edges

While the inter-atom adjacency constraints ensure that a
NUT’s atoms are all properly laid out on the grid, this is
not always guaranteed at the edges of the grid. There, upon
propagating the collapse of all those atoms, it could happen
that some of them would fall outside of the grid, yielding an
‘incomplete NUT’ behind, thus violating the NUT shape and
size preservation requirement.

The atoms that could cause that violation are known before
run-time. Therefore, during the initialization phase of nutWFC,
a cleanup step is performed on each grid cell, eliminating
from it any (potential) patterns whose associated NUTs do
not entirely fit within the grid. Definition 5 formulates this
for a given position in a grid for one of a NUT’s atoms. It is
required to be specific here, due to the different ways a Non-
Uniform Tile (NUT) can be laid on a grid. With this definition,
elimination can be explained for the Overlapping Model.

Definition 5 (Allowed NUT). A NUT n with extent
n.∆ and atoms n.A is said to be allowed for an atom
n.ai ∈ n.A with atom coordinate ai.c on a grid G
with extent G.∆ at grid coordinate c if the following
criteria are met:

1) (NUT within bounds) c− ai.c ≥ 0∧ c− ai.c+
n.∆ ≤ G.∆

2) (free) If requirement 1 holds, assert that for each
n’s atom coordinates aj .c ∈ n.A grid cell G[c+
aj .c] may be collapsed into atom aj .

Pattern elimination has six steps:
1) Given a cell at coordinate c, consider it to correspond

to the pattern atom coordinate relative to the pattern p,
which has extent p.∆.

2) For each pattern cell coordinate p.c where 0 ≤ p.c <
p.∆, assert that the NUT associated with the atom a in
the pattern at p.c is allowed for atom a and cell c+ p.c
in the grid.

Algorithm 2 nutWFC for the Overlapping Model

1: Initialize()
2: while not all cells are collapsed do
3: Observe()
4: Collapse()
5: CollapseNUTsInPattern()
6: Propagate()
7: end while

3) Disallow the pattern if at least on of its atoms results
in a disallowed NUT in the step prior and exclude the
disallowed pattern from the cell’s wave.

4) Edge case: consider an atom resulting in a disallowed
NUT and the grid positions of all other atoms associated
to the same NUT. If all of the cells at those positions
were already collapsed, the NUT would not be placed
at all. The properties of a NUT that will not be placed
cannot be violated. This means that the pattern should
thus still be allowed.

5) If a cell’s wave was changed, add it to the propagation
queue.

6) Perform propagation once all cells at the grid’s edges
have been processed.

E. Conflict handling

When a cell runs out of options, a conflict is encountered
and WFC would fail, even though a solution could exist in the
search space. By exploring this search space, the likelihood
of finding a solution increases. Backtracking, for example,
is guaranteed to return a solution should one exist, as it
can traverse the whole search space [6], [15]. However,
backtracking can only guarantee this at the cost of efficiency.
We therefore opt for a method that employs save states.
This method works by periodically creating save points that
consist of the wave and a grid containing the collapsed atoms
(nutWFC’s Overlapping Model requires both). When a conflict
is encountered, i.e. when a cell runs out of options, nutWFC
is reverted to a previous save point to try again from there.
The use of save points favors efficiency due to its lower time
complexity, but cannot guarantee that a solution will always
be found should it exist.

V. RESULTS AND DISCUSSION

In this section, we showcase the results of the following
two experiments. Experiment 1 features generating a forest
consisting of trees, grass and wide water bodies — an under-
explored application of WFC. Its purpose is to illustrate
how NUTs can help strengthen creative freedom compared to
standard WFC. Experiment 2 illustrates how a simple two-
story hut can be generated consisting of a variety of NUTs.
Its goal is to highlight how NUTs can be used to support
repeating NUT patterns while allowing for diversity. A more
comprehensive discussion of performance can be found in
Chapter 7 of Piepenbrink’s earlier work [3]. To reinforce a
NUT’s individual atoms, purely cosmetic color variations have
been added to the atoms displayed in the figures.

A. Forest terrain experiment

The results of Experiment 1 are shown in Figures 1 and 5.
They illustrate how control (by means of the input patterns)
and diversity (by combining many allowed adjacencies) are
harmonized, resulting in more expressiveness. For instance,
one can easily control the minimum height of the tree trunks
with NUTs, while maintaining variety of the tree canopies, as
indicated by the tree leaves in Figures 1 and 5a. Moreover, the



(a) An elevated rear view of the forest.

(b) A bottom view of the forest.

Fig. 5: The results of the forest terrain experiment. Grid size
(w,h,d): 40,15,20.

(a) The NUT set used in the forest experiment. From left to right:
grass, root, trunk, leaf, void, water.

(b) The patterns used for generating the trees.

(c) The patterns used for generating water and grass.

Fig. 6: The input used for forest generation (Experiment 1).

experiment shows how NUTs offer more control over the scale
and coarseness of free form elements, without compromising
variety. For example, by varying the tree base pattern in Figure
6b, one can control the minimum distance between trees.
Furthermore, the tree heights illustrate how, with atomization,

(a) A front view of the hut.

(b) A rear view of the hut.

Fig. 7: The results of the hut experiment. Grid size (w,h,d):
22,16,14.

simple input grids can be used to generate more structured
representations, which can be tweaked by slightly changing
the NUT set as preferred. In addition, the water bodies shown
in Figure 5b support this claim, where utilizing a two-by-
two NUT for composing the bodies steers the generation in
line with the intention of generating a body of water without
thin streams or deltas. Attempting to achieve this result with
standard WFC would be extremely challenging as larger NUTs
are being used, certainly without larger sliding windows under
the Overlapping Model, due to WFC’s lack of unique atom
identification. With nutWFC, this is not an issue: a small
window of size 2 suffices for this variety (see Figure 5), based
on a small set of inputs (see Figure 6).



(a) The NUT set used in the hut experiment. From left to right: b312,
b412, b212, b111, b213, b214, window, door, void.

(b) The patterns used for generating the ground floor walls with a
door.

(c) The patterns used for combining the two floors.

(d) The patterns used for generating the second floor with a window.

Fig. 8: The input used for hut generation (Experiment 2).

B. Hut experiment

The results of Experiment 2 are shown in Figure 7. In
this experiment, we favored control over freedom. The brick
patterns are repeated according to the input given (see Figure
8), placing them brick-by-brick, which is very different from
simply applying a texture. The red bottom floor also features
a door, whose shape and size are preserved correctly. This
shows that nutWFC can guarantee NUTs semantics upon
placement, unlike previous variants of WFC. Likewise, the
blue top floor illustrates nutWFC capabilities of synthesizing
different brick patterns and creating new combinations of brick
configurations. This floor also includes a large window with an
irregular shape (see Figure 7b), reinforcing the claim that NUT
shapes may have arbitrary forms. This experiment featured a
larger set of patterns, as shown in Figure 8, in order to include
two distinct floors in the output.

VI. CONCLUSION

Despite its popularity, the WFC algorithm is unable to work
with heterogeneous tile sets, consisting of tiles of disparate
shapes and sizes. We presented Non-Uniform Tile Wave
Function Collapse (nutWFC), a major extension of WFC that
introduces this possibility, through the notion of Non-Uniform
Tile (NUT), a rigid agglomeration of distinct one-cellular
atoms.

We described how nutWFC extends WFC to work under its
Overlapping Model, while preserving NUT shape and size in
all generated output. In addition, we also showed how WFC
can be seen as a particular case of nutWFC, in which all atoms
of each NUT have the same identifier.

Among nutWFC’s most innovative and attractive features,
we exemplified (i) the easier and more intuitive fine-tuning
provided by individual input patterns, which help specify
and preserve their intended semantics; (ii) the much richer
and nuanced input enabled by nutWFC allows for a larger
expressive power. We therefore believe nutWFC has the po-
tential to impact new areas of content generation, in particular
in a mixed-initiative context, empowering the incremental
expression of a designer’s intent. For this reason, we plan
to further investigate how such interactive facilities can best
profit from the procedural core of nutWFC, developed for our
current prototype implementation.

REFERENCES

[1] M. Gumin, “Wave Function Collapse,” https://github.com/mxgmn/
WaveFunctionCollapse, 2016, accessed: 2024-08-15.

[2] R. Piepenbrink and R. Bidarra, “How much Tetris can Wave Function
Collapse put up with?” Delft University of Technology, Delft, The
Netherlands, Tech. Rep. CGV-24-1, May 2024. [Online]. Available:
http://graphics.tudelft.nl/Publications-new/2024/PB24

[3] R. Piepenbrink, “Expressive Wave Function Collapse,” Master’s thesis,
Delft University of Technology, August 2024. [Online]. Available: https:
//resolver.tudelft.nl/uuid:cc11b0d7-82b5-48e5-adc2-d5033a6ab661

[4] I. Karth and A. M. Smith, “WaveFunctionCollapse is constraint solving
in the wild,” in Proceedings of the 12th International Conference on the
Foundations of Digital Games, 2017, pp. 1–10.

[5] ——, “WaveFunctionCollapse: Content generation via constraint solving
and machine learning,” IEEE Transactions on Games, vol. 14, no. 3, pp.
364–376, 2021.

[6] A. Newgas, “Tessera: A practical system for extended WaveFunction-
Collapse,” in Proceedings of the 16th International Conference on the
Foundations of Digital Games, 2021, pp. 1–7.

[7] ——, “Infinite modifying in blocks,” https://www.boristhebrave.com/
2021/11/08/infinite-modifying-in-blocks/, 2021, accessed: 2024-08-15.

[8] Marian42, “Wave Function Collapse - an algorithm for generating ran-
dom structures,” https://marian42.de/article/wfc/, 2020, accessed: 2024-
08-16.

[9] O. Stålberg. (2018) EPC2018 - Wave Function Collapse in Bad
North. Youtube. [Online]. Available: https://www.youtube.com/watch?
v=0bcZb-SsnrA

[10] ——, “Townscaper,” https://store.steampowered.com/app/1291340/
Townscaper/, 2021, accessed: 2024-08-15.

[11] F. Games, “Caves of Qud,” https://www.cavesofqud.com/, 2015, ac-
cessed: 2024-08-15.

[12] P. Merrell and D. Manocha, “Model synthesis: A general procedural
modeling algorithm,” IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 6, pp. 715–728, 2010.

[13] I. Karth, B. Aytemiz, R. Mawhorter, and A. M. Smith, “Neurosymbolic
map generation with VQ-VAE and WFC,” in Proceedings of the 16th
International Conference on the Foundations of Digital Games, 2021,
pp. 1–8.

[14] B. Bateni, I. Karth, and A. Smith, “Better resemblance without bigger
patterns: Making context-sensitive decisions in WFC,” in Proceedings of
the 18th International Conference on the Foundations of Digital Games,
2023, pp. 1–11, accessed: 2024-08-16.

[15] T. S. Langendam and R. Bidarra, “miWFC - designer empowerment
through mixed-initiative Wave Function Collapse,” in Proceedings of
the 17th International Conference on the Foundations of Digital Games,
2022, pp. 1–8. [Online]. Available: https://publications.graphics.tudelft.
nl/papers/45

[16] S. Alaka and R. Bidarra, “Hierarchical Semantic Wave Function
Collapse,” in Proceedings of the 18th International Conference on the
Foundations of Digital Games, 2023, accessed: 2024-08-16. [Online].
Available: https://publications.graphics.tudelft.nl/papers/67

[17] ——, “Mixed-initiative generation of virtual worlds - a comparative
study on the cognitive load of WFC and HSWFC,” in Proceedings
of the 19th International Conference on the Foundations of Digital
Games, 2024, accessed: 2025-04-16. [Online]. Available: https:
//publications.graphics.tudelft.nl/papers/23


