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ABSTRACT 
Providing advanced 3D interactive facilities to users of a client-
server collaborative modeling system presents a great challenge 
when thin clients are involved, mainly due to their lack of both 
a full-fledged CAD model and adequate modeling and solving 
functionalities. This paper presents a new approach that 
provides a convenient representation of feature model data 
suitable for direct manipulation of feature models at such 
clients. In particular, feature handles are proposed to support 
interactive feature editing. This approach combines all 
advantages of a thin client approach with the sort of 3D direct 
manipulation facilities usually only found in powerful 
standalone CAD systems. 
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1. INTRODUCTION 
Current CAD systems, holding a sizeable modeling kernel 
which maintains a full-fledged CAD model, provide many 
advanced interactive facilities for model manipulation. 
Requirement for this, however, is that they run on powerful, 
typically standalone, workstations. 

Current demands for supporting design collaboration, on 
the other hand, require an efficient networked environment in 
which geographically distributed members of a development 
team can work together on the design of a part. In an ideal 
collaborative modeling framework, several team members 
should be able to remotely browse and manipulate a model, via 
Internet, as if they were working directly at a powerful CAD 
station. A web-based system, for example, would greatly 
facilitate this, by providing access to all sorts of product 

information in a uniform, simple and familiar framework. The 
above mentioned characteristics of current CAD systems 
prevent them from matching these demands. 

A number of commercial tools that are now emerging 
provide some limited support for collaborative design activities. 
For example, tools for collaborative model annotation and 
visualization are now available in many CAD systems [1][2], 
providing concepts such as interactive 3D visualization, shared 
cameras and telepointers. However, such tools are primarily 
focused on visualization and inspection, basically using polygon 
mesh models, and do not support real modeling activities. In 
other words, they are valuable assistants for teamwork, but no 
real modeling systems. 

Meanwhile, new prototype systems are being developed 
which directly concentrate on collaborative modeling facilities. 
In such systems, mostly following a client-server architecture, a 
crucial role is played by their complex concurrency and 
synchronization mechanisms. 

Current commercial client-server modeling systems which 
offer some real collaborative modeling facilities as, for 
example, OneSpace [3] and IX SPeeD [4], use fat clients, 
requiring heavy data synchronization among clients, and are 
severely constrained by the model format into which they 
convert shared CAD models. 

Thin client web-based approaches, in contrast, are gaining 
particular attractiveness, one of the main reasons being that they 
usually provide a more efficient solution to data 
synchronization problems by using a single, server-based 
central model. In addition, directly loading the client 
application via Internet avoids complex installation and 
maintenance procedures, and therefore increases portability. 
Typically, in such systems, development team members should 
be able to specify a modeling operation, both concurrently and 
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interactively, appreciate its consequences and, upon approval, 
issue it for execution at the server. 

There are two important characteristics of thin clients in 
such systems which make user interactivity with the model 
particularly challenging. 

First, they lack a real modeling kernel, and cannot therefore 
locally execute actual modeling operations. Instead, because 
such operations are executed only at the server, it is required, (i) 
to export to the clients the necessary model data (indispensable 
for visualization and user interaction) after each operation, and 
(ii) to guarantee that such data is always kept up-to-date. 

Second, these thin clients lack a comprehensive constraint 
solver. As a result, it is in general not possible to locally 
anticipate all consequences a given operation may have in the 
whole model. For example, when several features are related 
through geometric constraints, displacing one of them will 
typically affect a few others, but the overall result can only be 
precisely determined by means of a constraint solver.  

Summarizing, a careful choice of client model data is 
required in order to provide thin clients with proper user 
interaction mechanisms. For one of the first proposals on 
intuitive direct manipulation of solid models, see [5]. 

webSPIFF, a web-based, collaborative feature modeling 
prototype system developed at Delft University of Technology, 
offers such a thin client framework. A complete description of 
its client-server architecture and functionality can be found in 
[6]. In particular, the reader is referred to this reference for all 
aspects related to its consistency management, data 
synchronization and validity maintenance facilities. In Section 3 
only a short overview of the system is provided. 

Model data used so far by the webSPIFF clients described in 
[6] was mainly aimed at providing its users with (i) interactive 
visualization of the model, (ii) interactive selection of feature 
faces during the specification of a modeling operation, and (iii) 
textual information on each feature's parameter values. The 
main limitation of such data is that it can only be modified by 
means of updates received from the server, never directly by the 
client itself. 

The goal of the work described here is twofold: to extend 
the model data at the webSPIFF clients (i) with a feature 
representation suitable for direct manipulation (Section 3), and 
(ii) with advanced interaction mechanisms supporting such 
feature direct manipulation (Section 4). 

2. INTERACTIVE FACILITIES IN 3D WEB SYSTEMS 

In this section, interactive facilities offered by a few web-based 
3D systems are briefly surveyed. The reader is referred to the 
Web3D Repository at the Web3D Consortium site [7] for an 
overview of other similar systems. 

Kaon 
The Kaon Composer [8] is a Java applet aimed at 

supporting virtual product presentations via Internet. It uses 
Kaon’s Master Model native format to provide interactive 
visualization for zooming, panning and rotating a 3D mesh 
model directly in the web browser. Pre-defined regions of the 
model can be made sensitive to actions, as for example 
displaying attached annotations or triggering an animation. In 
addition, queries on dimensions can be also interactively 
performed by clicking and dragging on the model. 

RealityWave 
RealityWave [9] developed VizStream Platform, a client-

server technology aimed at supporting collaborative browsing 
and visualization of 3D models by loading a simple viewer in a 
web browser. In addition to the same functionality mentioned 
above for Kaon, VizStream provides also inspection facilities 
as, for example, clipping the 3D model by means of an 
interactively adjustable clipping-plane. The user can also attach 
markup to regions of his choice on the visualized model. 
Finally, the possibility of selecting which (and how) 
components of the model are visualized is also provided. 

Art of Illusion 
Art of Illusion [10] is an open source studio application 

integrating modeling and rendering functionality. Although it is 
not strictly speaking web-based, we include it here as, to the 
best of our knowledge, it is the first fully Java-implemented 3D 
modeling system available. Being a moderately small 
application, it offers advanced direct manipulation and complex 
modeling operations (including face lifting and Boolean 
operations), comparable to those found in many commercial 
programs. 

3. CLIENT REPRESENTATIONS FOR FEATURE 
MODELS 

The webSPIFF server has two main components: the SPIFF 
modeling system and the Session Manager. The SPIFF modeling 
system provides all feature modeling functionality, including 
multiple views on a part [11], advanced visualization [12] and 
validity maintenance of feature models [13]. It maintains a 
central product model, which includes a cellular model for the 
geometric representation of a part, and canonical shapes 
representing the individual features in each view. The Session 
Manager provides functionality to start, join, leave and close a 
collaborative session, to coordinate the session, and to manage 
all communication between SPIFF and the clients. In particular, 
the Session Manager collects all operations requested by the 
various clients, and schedules them for execution at the SPIFF 
system. 

webSPIFF clients operate locally as much as possible, e.g. 
regarding visualization of, and interaction with, their feature 
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model, and only high-level messages, e.g. for specifying 
modeling operations, as well as a limited amount of model data 
necessary for updating the client information, are sent over the 
network. As soon as real feature model computations are 
required, such as for executing modeling operations, conversion 
between feature views, and feature validity maintenance, they 
are executed at the webSPIFF server, on the central product 
model, and their results are eventually exported back to the 
clients. An important characteristic of this architecture is that by 
using a central product model, inconsistencies are avoided 
among multiple versions of the model data at different clients. 

Both the clients and the Session Manager of webSPIFF were 
implemented in Java, using its Remote Method Invocation 
(RMI) facilities for communication, and Java3D for model 
visualization. 

So far, the webSPIFF graphical user interface mainly 
consisted of (i) a panel where the user can specify modeling 
operations, and (ii) one or more cameras, for interactive display 
of the feature model and selection of its entities (see Section 
3.2). This is shown in the example of Figure 1, where a user is 
specifying a modification operation on one of the features in the 
model. 

In order to support direct manipulation on the cameras 
during collaborative modeling sessions, each client needs to 
receive from the server the appropriate model data. This data 
has to be carefully derived from the feature model, in order to 
satisfy two somehow conflicting goals: (i) it should contain all 

aspects of the feature model which are relevant for direct 
manipulation purposes; (ii) it should be compact enough to be 
quickly updated in all clients whenever the model is modified at 
the server. 

In this section, a combination of model data is presented 
that fulfils these goals. In particular, the new notion of feature 
skeletons is presented, and examples are given of how they 
represent the relations among feature instances in a model. The 
interactive facilities provided by feature skeletons will be dealt 
with in Section 4. 

3.1. Graphical data 

Graphical data consists of feature model images that are 
rendered at the webSPIFF server in GIF format, and displayed in 
camera windows at the clients. These images provide very 
powerful visualizations of a feature model [11]. Many 
visualization options can be specified. For example, selected 
features may be visualized with shaded faces, and the rest of the 
model as a wire frame or with visible lines only. Also, 
additional feature information, such as closure faces of holes, 
can be visualized. A separate image is needed for each camera, 
and it must be updated every time the model or the camera 
settings are changed. 

These model images provide the camera background on top 
of which other visualization and interaction techniques are 
available at the webSPIFF clients.  

 

Figure 1 – Graphical user interface of webSPIFF 



  Copyright © 2004 by ASME 

3.2. Geometric data 

webSPIFF clients dispose of two representations of the model 
geometry: the visualization model and the selection model. 
Each one has a specific purpose in the camera windows at the 
clients. Both the visualization model and the selection model 
are generated by the webSPIFF server in VRML format and 
loaded by a client into its camera's scene graph. 

The visualization model represents the global shape of the 
product model. It is used at the clients for interactively 
modifying the camera viewing parameters (e.g. rotating and 
zooming). All cameras on a particular client use the same local 
visualization model, but each camera displays it with its own 
viewing parameters. 

The selection model is a collection of objects representing 
the canonical shapes of all features in a given view of the 
product. Its purpose is to support interactive selection of feature 
faces on a feature model image, during the specification of a 
modeling operation. Again, the selection model is identical for 
all cameras on a client, each applying its own viewing 
parameters.  

3.3. Feature skeletons 

A feature skeleton is a parametric representation of a feature 
instance, which is linked to a simplified geometric model of its 
shape. This link is such that by interactively manipulating the 
latter, the parameter values of the former are modified. 

Since skeletons are meant to represent feature instances at 
the client, the structure of skeletons bears resemblance with the 
generic structure of a feature class, as described in [13]. This 
structure is read from the server during client initialization, for 
each class in the feature library, after which the client is able to 
instantiate the skeleton of every feature instance in a feature 
model. 

All skeletons consist of three main components: a shape 
component, a positioning component and a validity component; 
see Figure 2. The shape component describes the feature shape 
in terms of (i) a number of so-called shape elements (e.g. the 
axis reference and the top, bottom and side faces of a cylinder 
shape), (ii) a number of parameters (e.g. the radius and the 
height of a cylinder shape), and (iii) an origin, specified as the 
intersection point of some shape elements (e.g., for the cylinder 
shape, the intersection of the axis and the top face). 

Each shape parameter conveys a relation between two 
shape elements. For example, the height of a cylinder shape 
expresses the distance between its top and bottom faces. 
Although several feature classes may be based on the same 
shape type (e.g. block or cylinder), each feature class uses its 
shape in a different way. This is also reflected in the 
corresponding feature skeletons, and specifically, in the way the 
skeleton parameters may be adjusted by the user. For example, 
the skeletons of a blind hole and of a through hole both have a 
similar cylinder shape component. However, the blind hole 
skeleton provides two adjustable parameters, radius and depth, 
whereas for the through hole skeleton only the radius parameter 
is adjustable, its actual height being derived from the attaches of 
the through hole.  

In short, skeleton parameters may be either adjustable or 
derived, and these settings are specified in each feature class, 
together with its own attach and positioning scheme, which will 
now be described. 

The positioning component of a skeleton describes the 
geometric relations of a feature with the rest of the model. Such 
relations represent the attach and geometric constraints used at 
the server to hierarchically structure the actual feature model. 
An attach constraint is a kind of coplanar geometric constraint 
which takes into account the nature of the two features it relates 
in order to determine the orientation of the attach. Examples of 
geometric constraints are distance-face-face and angle-face-face 
constraints between two planar faces. Because the clients do not 
dispose of a geometric constraint solver, recording such 
relations amounts to permanently maintaining the relative 
position, orientation and dimensions of each feature in terms of 
the features to which it is explicitly related. Basically, a skeleton 
achieves this by relating the parameters and the origin of its 
shape to elements of other features by means of geometric 
transformations.  

Among other things, this information is crucial to know 
which other features a given feature depends on, and thus, to 
allow for tracking the correct propagation of changes when any 
of those features is modified. For example, Figure 3 presents a 

  

Figure 2 - Generic structure of a feature skeleton 
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model with a rectangular step attached to a base block, together 
with the respective skeletons. When the block width parameter 
(relating its left and right faces) is increased, the step width 
should be increased as well, because its left and right attaches 
refer to those block faces. As will be explained in the next 
section, when a user is modifying a feature, its dependent 
features are also highlighted in the camera, so that possible 
modifications in their derived parameters become apparent to 
him as well. 

The validity criteria referred to in Figure 3 reflect the 
validation constraints specified by a feature class for each of its 
instances. An example of these are dimension constraints, which 
prescribe a specific range for the value of a given feature 
parameter. Such criteria can be profitably used during direct 
manipulation of the model, to prevent the user from performing 
feature modifications that would turn the model invalid. It 
should be noted, however, that not all advanced validity criteria 
specified in feature classes can be maintained and assessed 
remotely at the clients. This is, for example, the case of most 

topology-related validity criteria involved in feature interaction 
management, which can only be properly maintained on the 
central model at the server [13]. 

Summarizing, feature skeletons provide a compact 
parametric representation of the features in a model, and their 
relations. As a result of their integration with the feature 
geometry stored in the selection model, webSPIFF clients are 
able to support direct manipulation of the feature model, as will 
be discussed in the next section. 

4. INTERACTIVE FEATURE EDITING FACILITIES 

To realize interactive editing facilities at the webSPIFF clients, a 
number of methods have been implemented at the clients that 
visualize a feature skeleton, including all its adjustable 
parameters, and allow for their interactive modification. As 
explained in Section 1, the main goal of this functionality is to 
achieve that webSPIFF users specify their modeling operations 

  

Figure 3 - Propagation of dimension modifications between dependent features 
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in an interactive manner and be given as much insight as 
possible into their result, prior to recurring to the server. 

4.1. Feature handles and the manipulation model 

Direct manipulation on a skeleton is performed by means of 
feature handles. Feature handles are visual objects providing 
functionality for user interaction with the feature model. In 
particular, each handle is associated to exactly one parameter, 
so that dragging a handle adjusts the value of the corresponding 
parameter in the skeleton. 

According to the types of feature parameters, there are 
three sorts of handles: (i) attach and reference handles, (ii) 
positioning handles, and (iii) shape parameter handles. Handles 
for attaches and references are aimed at selecting the shape 
elements from other skeletons to be used in attaches and 
positioning references. These handles describe thus how the 
feature skeleton relates to those of the other features in the 
feature model. Handles for positioning are aimed at setting the 
value for positioning parameters. These handles determine the 
distances and angles used in skeleton position and orientation 
parameters. Handles for shape parameters are aimed at setting 
the values for the adjustable parameters of a feature skeleton. 
Each handle type is visualized with its own appearance, 
facilitating that the user chooses and manipulates the desired 
parameters. 

From the type of handle and the relation between its 
parameter and the involved feature elements, stored in the 
feature skeleton, one can derive the direction(s) in which a 
handle can be moved. Handles have built-in mouse behaviors, 
which constrain their movement according to such direction(s). 

The collection of all handles of one feature is called the 
manipulation model of the feature. This is visualized whenever 

a feature is selected to be modified, as illustrated in the next 
subsection. 

4.2. Direct feature manipulation 

The basic procedure to interactively modify a feature in the 
model is straightforward. First, the user selects the feature by 
clicking it on a camera, showing a model image. If more than 
one feature is located behind the selected camera position, then 
repeated clicking on the same position will scroll through all 
intersected features. The selected feature is highlighted by 
displaying its shape (from the selection model) and, on top of it, 
its manipulation model, containing the different sorts of handles 
mentioned above, which can be used to modify the feature. 
Dragging a handle results in the immediate modification of the 
corresponding feature skeleton and of its selection model. As 
the shaded image at the camera background does not change, it 
is clearly visible what is the effect of changing the parameter 
whose handle is being dragged. When the user has finished 
manipulating the feature, the specified modify operation, 
containing the new parameters, is sent to the server, where it is 
executed on the central model. As a result, new model data is 
generated and sent back to the client, where it is visualized. 

The example in Figure 4 illustrates this process with a 
modification of the length parameter of a step feature. First, the 
step is selected at the client’s camera, which results in the 
visualization (i) of its manipulation model, (ii) of its selection 
model, and (iii) of the shapes of all features dependent on the 
step, i.e., in this case, two holes and two pockets (see Figure 
4.b). Subsequently, the handle of the step length parameter 
(between its front and back faces) is dragged to increase its 
value. As a result, the selection model of the step is transformed 
accordingly, as well as that of its dependent features. Both are 

  

Figure 4 – Modifying a feature at the client 
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visualized in the camera, as semi-transparent entities, on top of 
the original model image. Because the latter remains 
unchanged, while the former is updated in real-time, the effect 
of the step modification is clearly perceptible to the user (see 
Figure 4.c). Finally, the operation is submitted for execution at 
the server, after which the resulting model is displayed at the 
client’s camera (see Figure 4.d). 

Adding a new feature to the current feature model is in 
many regards analogous to modifying an existing one. It only 
requires an initial step, in order to first choose the feature class 
of the new feature instance, and to select its attach faces. Once 
this has been done, the shape of the new instance is displayed, 
together with its manipulation model, with its parameters set to 
their default values. The user is then required to interactively 
select the reference(s) required for positioning the new feature, 
after which its shape parameters can be fine tuned as desired 
using the handles. 

Figure 5 provides a simple example of this, illustrating how 
a new through slot feature is attached to the final model of the 
previous example (see Figure 4.d). Initially, the user 
interactively selects the three attach faces for the through slot: 
first, the top face of the base block (see Figure 5.a), and then the 

two (from and to) attach faces for the through slot (see Figure 
5.b). After confirmation of this input, the slot shape and its 
manipulation model are visualized (see Figure 5.c). 
Subsequently, the user selects the required reference face 
relative to which the slot is positioned (see Figure 5.d) and sets 
the corresponding distance value (see Figure 5.e). The user can 
then proceed to adjust the shape parameters of the slot using the 
corresponding handles. First, the slot depth is set (see Figure 
5.f) and then the slot width (see Figure 5.g). When the user is 
satisfied with the settings of the new slot feature, he can submit 
the operation for execution at the server, after which a new 
model image of the resulting model is displayed at his camera 
(see Figure 5.h). 

5. IMPLEMENTATION ISSUES 

An important aspect in the implementation of the interactive 
facilities described above is the ability to locally modify, in 
real-time, one or more feature shapes, so that the user gets an 
immediate perception of what is affected by the modeling 
operation being specified. For this, functionality has been 
implemented that directly modifies (a subset of) the coordinates 

  

Figure 5 - Adding a new feature to the feature model 
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of a feature shape in the selection model. This is here described 
in some detail. 

As explained in Subsection 3.2, the selection model 
consists of a number of VRML shapes loaded into the Java3D 
scene. Consequently, reloading any of them into the scene with 
modified geometry results in immediate rendering of the new 
shape in the camera.  

Basically, this procedure encompasses the following steps: 

1. read in a VRML shape; 

2. determine which of its vertex coordinates have to be 
modified, based on the handle event that has been 
triggered, on the type of the corresponding parameter, 
and on the associated feature faces; 

3. from the handle displacement detected, derive the 
appropriate transformation matrix and apply it to all 
the vertices of step 2; 

4. write back the modified VRML shape and reload it 
into the scene. 

Because of step 2, this procedure is rather generic, and can be 
applied to obtain both a feature deformation due to a change in 
a shape parameter (linear or angular) and the displacement of an 
entire feature shape. The latter may be due to a change in a 
positioning parameter, but it is also applicable for all dependent 
features which are affected by a modeling operation. 

6. CONCLUSIONS 

A novel approach has been presented that enables thin clients in 
a client-server collaborative modeling environment to provide 
their users with direct manipulation facilities on a feature 
model. These are made possible by the use of feature skeletons, 
a compact parametric representation of the features in a model 
and their relations, which are maintained at the system's thin 
clients. Features represented by skeletons can be visualized and 
manipulated in real-time, by means of several types of handles, 
allowing users to locally specify a modeling operation in an 
interactive manner, and giving them insight into its results, prior 
to recurring to the modeling server for its actual execution. 

Future work in this project will clarify which validity 
criteria can be handled at the client and which cannot. 
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