
 Copyright © 2004 by ASME

Proceedings of DETC’04
2004 ASME Design Engineering Technical Conferences

September 28-October 2, 2004, Salt Lake City, Utah

DETC04-57716

DIRECT MANIPULATION OF FEATURE MODELS IN WEB-BASED COLLABORATIVE DESIGN

Rafael Bidarra, André van Bunnik and Willem F. Bronsvoort
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, NL-2628 CD Delft, The Netherlands

Email: (Bidarra/Bronsvoort)@ewi.tudelft.nl

ABSTRACT
Providing advanced 3D interactive facilities to users of a client-
server collaborative modeling system presents a great challenge
when thin clients are involved, mainly due to their lack of both
a full-fledged CAD model and adequate modeling and solving
functionalities. This paper presents a new approach that
provides a convenient representation of feature model data
suitable for direct manipulation of feature models at such
clients. In particular, feature handles are proposed to support
interactive feature editing. This approach combines all
advantages of a thin client approach with the sort of 3D direct
manipulation facilities usually only found in powerful
standalone CAD systems.

KEYWORDS
feature modeling, graphical interaction, web-based modeling,
collaborative modeling

1. INTRODUCTION
Current CAD systems, holding a sizeable modeling kernel
which maintains a full-fledged CAD model, provide many
advanced interactive facilities for model manipulation.
Requirement for this, however, is that they run on powerful,
typically standalone, workstations.

Current demands for supporting design collaboration, on
the other hand, require an efficient networked environment in
which geographically distributed members of a development
team can work together on the design of a part. In an ideal
collaborative modeling framework, several team members
should be able to remotely browse and manipulate a model, via
Internet, as if they were working directly at a powerful CAD
station. A web-based system, for example, would greatly
facilitate this, by providing access to all sorts of product

information in a uniform, simple and familiar framework. The
above mentioned characteristics of current CAD systems
prevent them from matching these demands.

A number of commercial tools that are now emerging
provide some limited support for collaborative design activities.
For example, tools for collaborative model annotation and
visualization are now available in many CAD systems [1][2],
providing concepts such as interactive 3D visualization, shared
cameras and telepointers. However, such tools are primarily
focused on visualization and inspection, basically using polygon
mesh models, and do not support real modeling activities. In
other words, they are valuable assistants for teamwork, but no
real modeling systems.

Meanwhile, new prototype systems are being developed
which directly concentrate on collaborative modeling facilities.
In such systems, mostly following a client-server architecture, a
crucial role is played by their complex concurrency and
synchronization mechanisms.

Current commercial client-server modeling systems which
offer some real collaborative modeling facilities as, for
example, OneSpace [3] and IX SPeeD [4], use fat clients,
requiring heavy data synchronization among clients, and are
severely constrained by the model format into which they
convert shared CAD models.

Thin client web-based approaches, in contrast, are gaining
particular attractiveness, one of the main reasons being that they
usually provide a more efficient solution to data
synchronization problems by using a single, server-based
central model. In addition, directly loading the client
application via Internet avoids complex installation and
maintenance procedures, and therefore increases portability.
Typically, in such systems, development team members should
be able to specify a modeling operation, both concurrently and

 Copyright © 2004 by ASME

interactively, appreciate its consequences and, upon approval,
issue it for execution at the server.

There are two important characteristics of thin clients in
such systems which make user interactivity with the model
particularly challenging.

First, they lack a real modeling kernel, and cannot therefore
locally execute actual modeling operations. Instead, because
such operations are executed only at the server, it is required, (i)
to export to the clients the necessary model data (indispensable
for visualization and user interaction) after each operation, and
(ii) to guarantee that such data is always kept up-to-date.

Second, these thin clients lack a comprehensive constraint
solver. As a result, it is in general not possible to locally
anticipate all consequences a given operation may have in the
whole model. For example, when several features are related
through geometric constraints, displacing one of them will
typically affect a few others, but the overall result can only be
precisely determined by means of a constraint solver.

Summarizing, a careful choice of client model data is
required in order to provide thin clients with proper user
interaction mechanisms. For one of the first proposals on
intuitive direct manipulation of solid models, see [5].

webSPIFF, a web-based, collaborative feature modeling
prototype system developed at Delft University of Technology,
offers such a thin client framework. A complete description of
its client-server architecture and functionality can be found in
[6]. In particular, the reader is referred to this reference for all
aspects related to its consistency management, data
synchronization and validity maintenance facilities. In Section 3
only a short overview of the system is provided.

Model data used so far by the webSPIFF clients described in
[6] was mainly aimed at providing its users with (i) interactive
visualization of the model, (ii) interactive selection of feature
faces during the specification of a modeling operation, and (iii)
textual information on each feature's parameter values. The
main limitation of such data is that it can only be modified by
means of updates received from the server, never directly by the
client itself.

The goal of the work described here is twofold: to extend
the model data at the webSPIFF clients (i) with a feature
representation suitable for direct manipulation (Section 3), and
(ii) with advanced interaction mechanisms supporting such
feature direct manipulation (Section 4).

2. INTERACTIVE FACILITIES IN 3D WEB SYSTEMS

In this section, interactive facilities offered by a few web-based
3D systems are briefly surveyed. The reader is referred to the
Web3D Repository at the Web3D Consortium site [7] for an
overview of other similar systems.

Kaon
The Kaon Composer [8] is a Java applet aimed at

supporting virtual product presentations via Internet. It uses
Kaon’s Master Model native format to provide interactive
visualization for zooming, panning and rotating a 3D mesh
model directly in the web browser. Pre-defined regions of the
model can be made sensitive to actions, as for example
displaying attached annotations or triggering an animation. In
addition, queries on dimensions can be also interactively
performed by clicking and dragging on the model.

RealityWave
RealityWave [9] developed VizStream Platform, a client-

server technology aimed at supporting collaborative browsing
and visualization of 3D models by loading a simple viewer in a
web browser. In addition to the same functionality mentioned
above for Kaon, VizStream provides also inspection facilities
as, for example, clipping the 3D model by means of an
interactively adjustable clipping-plane. The user can also attach
markup to regions of his choice on the visualized model.
Finally, the possibility of selecting which (and how)
components of the model are visualized is also provided.

Art of Illusion
Art of Illusion [10] is an open source studio application

integrating modeling and rendering functionality. Although it is
not strictly speaking web-based, we include it here as, to the
best of our knowledge, it is the first fully Java-implemented 3D
modeling system available. Being a moderately small
application, it offers advanced direct manipulation and complex
modeling operations (including face lifting and Boolean
operations), comparable to those found in many commercial
programs.

3. CLIENT REPRESENTATIONS FOR FEATURE
MODELS

The webSPIFF server has two main components: the SPIFF
modeling system and the Session Manager. The SPIFF modeling
system provides all feature modeling functionality, including
multiple views on a part [11], advanced visualization [12] and
validity maintenance of feature models [13]. It maintains a
central product model, which includes a cellular model for the
geometric representation of a part, and canonical shapes
representing the individual features in each view. The Session
Manager provides functionality to start, join, leave and close a
collaborative session, to coordinate the session, and to manage
all communication between SPIFF and the clients. In particular,
the Session Manager collects all operations requested by the
various clients, and schedules them for execution at the SPIFF
system.

webSPIFF clients operate locally as much as possible, e.g.
regarding visualization of, and interaction with, their feature

 Copyright © 2004 by ASME

model, and only high-level messages, e.g. for specifying
modeling operations, as well as a limited amount of model data
necessary for updating the client information, are sent over the
network. As soon as real feature model computations are
required, such as for executing modeling operations, conversion
between feature views, and feature validity maintenance, they
are executed at the webSPIFF server, on the central product
model, and their results are eventually exported back to the
clients. An important characteristic of this architecture is that by
using a central product model, inconsistencies are avoided
among multiple versions of the model data at different clients.

Both the clients and the Session Manager of webSPIFF were
implemented in Java, using its Remote Method Invocation
(RMI) facilities for communication, and Java3D for model
visualization.

So far, the webSPIFF graphical user interface mainly
consisted of (i) a panel where the user can specify modeling
operations, and (ii) one or more cameras, for interactive display
of the feature model and selection of its entities (see Section
3.2). This is shown in the example of Figure 1, where a user is
specifying a modification operation on one of the features in the
model.

In order to support direct manipulation on the cameras
during collaborative modeling sessions, each client needs to
receive from the server the appropriate model data. This data
has to be carefully derived from the feature model, in order to
satisfy two somehow conflicting goals: (i) it should contain all

aspects of the feature model which are relevant for direct
manipulation purposes; (ii) it should be compact enough to be
quickly updated in all clients whenever the model is modified at
the server.

In this section, a combination of model data is presented
that fulfils these goals. In particular, the new notion of feature
skeletons is presented, and examples are given of how they
represent the relations among feature instances in a model. The
interactive facilities provided by feature skeletons will be dealt
with in Section 4.

3.1. Graphical data

Graphical data consists of feature model images that are
rendered at the webSPIFF server in GIF format, and displayed in
camera windows at the clients. These images provide very
powerful visualizations of a feature model [11]. Many
visualization options can be specified. For example, selected
features may be visualized with shaded faces, and the rest of the
model as a wire frame or with visible lines only. Also,
additional feature information, such as closure faces of holes,
can be visualized. A separate image is needed for each camera,
and it must be updated every time the model or the camera
settings are changed.

These model images provide the camera background on top
of which other visualization and interaction techniques are
available at the webSPIFF clients.

Figure 1 – Graphical user interface of webSPIFF

 Copyright © 2004 by ASME

3.2. Geometric data

webSPIFF clients dispose of two representations of the model
geometry: the visualization model and the selection model.
Each one has a specific purpose in the camera windows at the
clients. Both the visualization model and the selection model
are generated by the webSPIFF server in VRML format and
loaded by a client into its camera's scene graph.

The visualization model represents the global shape of the
product model. It is used at the clients for interactively
modifying the camera viewing parameters (e.g. rotating and
zooming). All cameras on a particular client use the same local
visualization model, but each camera displays it with its own
viewing parameters.

The selection model is a collection of objects representing
the canonical shapes of all features in a given view of the
product. Its purpose is to support interactive selection of feature
faces on a feature model image, during the specification of a
modeling operation. Again, the selection model is identical for
all cameras on a client, each applying its own viewing
parameters.

3.3. Feature skeletons

A feature skeleton is a parametric representation of a feature
instance, which is linked to a simplified geometric model of its
shape. This link is such that by interactively manipulating the
latter, the parameter values of the former are modified.

Since skeletons are meant to represent feature instances at
the client, the structure of skeletons bears resemblance with the
generic structure of a feature class, as described in [13]. This
structure is read from the server during client initialization, for
each class in the feature library, after which the client is able to
instantiate the skeleton of every feature instance in a feature
model.

All skeletons consist of three main components: a shape
component, a positioning component and a validity component;
see Figure 2. The shape component describes the feature shape
in terms of (i) a number of so-called shape elements (e.g. the
axis reference and the top, bottom and side faces of a cylinder
shape), (ii) a number of parameters (e.g. the radius and the
height of a cylinder shape), and (iii) an origin, specified as the
intersection point of some shape elements (e.g., for the cylinder
shape, the intersection of the axis and the top face).

Each shape parameter conveys a relation between two
shape elements. For example, the height of a cylinder shape
expresses the distance between its top and bottom faces.
Although several feature classes may be based on the same
shape type (e.g. block or cylinder), each feature class uses its
shape in a different way. This is also reflected in the
corresponding feature skeletons, and specifically, in the way the
skeleton parameters may be adjusted by the user. For example,
the skeletons of a blind hole and of a through hole both have a
similar cylinder shape component. However, the blind hole
skeleton provides two adjustable parameters, radius and depth,
whereas for the through hole skeleton only the radius parameter
is adjustable, its actual height being derived from the attaches of
the through hole.

In short, skeleton parameters may be either adjustable or
derived, and these settings are specified in each feature class,
together with its own attach and positioning scheme, which will
now be described.

The positioning component of a skeleton describes the
geometric relations of a feature with the rest of the model. Such
relations represent the attach and geometric constraints used at
the server to hierarchically structure the actual feature model.
An attach constraint is a kind of coplanar geometric constraint
which takes into account the nature of the two features it relates
in order to determine the orientation of the attach. Examples of
geometric constraints are distance-face-face and angle-face-face
constraints between two planar faces. Because the clients do not
dispose of a geometric constraint solver, recording such
relations amounts to permanently maintaining the relative
position, orientation and dimensions of each feature in terms of
the features to which it is explicitly related. Basically, a skeleton
achieves this by relating the parameters and the origin of its
shape to elements of other features by means of geometric
transformations.

Among other things, this information is crucial to know
which other features a given feature depends on, and thus, to
allow for tracking the correct propagation of changes when any
of those features is modified. For example, Figure 3 presents a

Figure 2 - Generic structure of a feature skeleton

 Copyright © 2004 by ASME

model with a rectangular step attached to a base block, together
with the respective skeletons. When the block width parameter
(relating its left and right faces) is increased, the step width
should be increased as well, because its left and right attaches
refer to those block faces. As will be explained in the next
section, when a user is modifying a feature, its dependent
features are also highlighted in the camera, so that possible
modifications in their derived parameters become apparent to
him as well.

The validity criteria referred to in Figure 3 reflect the
validation constraints specified by a feature class for each of its
instances. An example of these are dimension constraints, which
prescribe a specific range for the value of a given feature
parameter. Such criteria can be profitably used during direct
manipulation of the model, to prevent the user from performing
feature modifications that would turn the model invalid. It
should be noted, however, that not all advanced validity criteria
specified in feature classes can be maintained and assessed
remotely at the clients. This is, for example, the case of most

topology-related validity criteria involved in feature interaction
management, which can only be properly maintained on the
central model at the server [13].

Summarizing, feature skeletons provide a compact
parametric representation of the features in a model, and their
relations. As a result of their integration with the feature
geometry stored in the selection model, webSPIFF clients are
able to support direct manipulation of the feature model, as will
be discussed in the next section.

4. INTERACTIVE FEATURE EDITING FACILITIES

To realize interactive editing facilities at the webSPIFF clients, a
number of methods have been implemented at the clients that
visualize a feature skeleton, including all its adjustable
parameters, and allow for their interactive modification. As
explained in Section 1, the main goal of this functionality is to
achieve that webSPIFF users specify their modeling operations

Figure 3 - Propagation of dimension modifications between dependent features

 Copyright © 2004 by ASME

in an interactive manner and be given as much insight as
possible into their result, prior to recurring to the server.

4.1. Feature handles and the manipulation model

Direct manipulation on a skeleton is performed by means of
feature handles. Feature handles are visual objects providing
functionality for user interaction with the feature model. In
particular, each handle is associated to exactly one parameter,
so that dragging a handle adjusts the value of the corresponding
parameter in the skeleton.

According to the types of feature parameters, there are
three sorts of handles: (i) attach and reference handles, (ii)
positioning handles, and (iii) shape parameter handles. Handles
for attaches and references are aimed at selecting the shape
elements from other skeletons to be used in attaches and
positioning references. These handles describe thus how the
feature skeleton relates to those of the other features in the
feature model. Handles for positioning are aimed at setting the
value for positioning parameters. These handles determine the
distances and angles used in skeleton position and orientation
parameters. Handles for shape parameters are aimed at setting
the values for the adjustable parameters of a feature skeleton.
Each handle type is visualized with its own appearance,
facilitating that the user chooses and manipulates the desired
parameters.

From the type of handle and the relation between its
parameter and the involved feature elements, stored in the
feature skeleton, one can derive the direction(s) in which a
handle can be moved. Handles have built-in mouse behaviors,
which constrain their movement according to such direction(s).

The collection of all handles of one feature is called the
manipulation model of the feature. This is visualized whenever

a feature is selected to be modified, as illustrated in the next
subsection.

4.2. Direct feature manipulation

The basic procedure to interactively modify a feature in the
model is straightforward. First, the user selects the feature by
clicking it on a camera, showing a model image. If more than
one feature is located behind the selected camera position, then
repeated clicking on the same position will scroll through all
intersected features. The selected feature is highlighted by
displaying its shape (from the selection model) and, on top of it,
its manipulation model, containing the different sorts of handles
mentioned above, which can be used to modify the feature.
Dragging a handle results in the immediate modification of the
corresponding feature skeleton and of its selection model. As
the shaded image at the camera background does not change, it
is clearly visible what is the effect of changing the parameter
whose handle is being dragged. When the user has finished
manipulating the feature, the specified modify operation,
containing the new parameters, is sent to the server, where it is
executed on the central model. As a result, new model data is
generated and sent back to the client, where it is visualized.

The example in Figure 4 illustrates this process with a
modification of the length parameter of a step feature. First, the
step is selected at the client’s camera, which results in the
visualization (i) of its manipulation model, (ii) of its selection
model, and (iii) of the shapes of all features dependent on the
step, i.e., in this case, two holes and two pockets (see Figure
4.b). Subsequently, the handle of the step length parameter
(between its front and back faces) is dragged to increase its
value. As a result, the selection model of the step is transformed
accordingly, as well as that of its dependent features. Both are

Figure 4 – Modifying a feature at the client

 Copyright © 2004 by ASME

visualized in the camera, as semi-transparent entities, on top of
the original model image. Because the latter remains
unchanged, while the former is updated in real-time, the effect
of the step modification is clearly perceptible to the user (see
Figure 4.c). Finally, the operation is submitted for execution at
the server, after which the resulting model is displayed at the
client’s camera (see Figure 4.d).

Adding a new feature to the current feature model is in
many regards analogous to modifying an existing one. It only
requires an initial step, in order to first choose the feature class
of the new feature instance, and to select its attach faces. Once
this has been done, the shape of the new instance is displayed,
together with its manipulation model, with its parameters set to
their default values. The user is then required to interactively
select the reference(s) required for positioning the new feature,
after which its shape parameters can be fine tuned as desired
using the handles.

Figure 5 provides a simple example of this, illustrating how
a new through slot feature is attached to the final model of the
previous example (see Figure 4.d). Initially, the user
interactively selects the three attach faces for the through slot:
first, the top face of the base block (see Figure 5.a), and then the

two (from and to) attach faces for the through slot (see Figure
5.b). After confirmation of this input, the slot shape and its
manipulation model are visualized (see Figure 5.c).
Subsequently, the user selects the required reference face
relative to which the slot is positioned (see Figure 5.d) and sets
the corresponding distance value (see Figure 5.e). The user can
then proceed to adjust the shape parameters of the slot using the
corresponding handles. First, the slot depth is set (see Figure
5.f) and then the slot width (see Figure 5.g). When the user is
satisfied with the settings of the new slot feature, he can submit
the operation for execution at the server, after which a new
model image of the resulting model is displayed at his camera
(see Figure 5.h).

5. IMPLEMENTATION ISSUES

An important aspect in the implementation of the interactive
facilities described above is the ability to locally modify, in
real-time, one or more feature shapes, so that the user gets an
immediate perception of what is affected by the modeling
operation being specified. For this, functionality has been
implemented that directly modifies (a subset of) the coordinates

Figure 5 - Adding a new feature to the feature model

 Copyright © 2004 by ASME

of a feature shape in the selection model. This is here described
in some detail.

As explained in Subsection 3.2, the selection model
consists of a number of VRML shapes loaded into the Java3D
scene. Consequently, reloading any of them into the scene with
modified geometry results in immediate rendering of the new
shape in the camera.

Basically, this procedure encompasses the following steps:

1. read in a VRML shape;

2. determine which of its vertex coordinates have to be
modified, based on the handle event that has been
triggered, on the type of the corresponding parameter,
and on the associated feature faces;

3. from the handle displacement detected, derive the
appropriate transformation matrix and apply it to all
the vertices of step 2;

4. write back the modified VRML shape and reload it
into the scene.

Because of step 2, this procedure is rather generic, and can be
applied to obtain both a feature deformation due to a change in
a shape parameter (linear or angular) and the displacement of an
entire feature shape. The latter may be due to a change in a
positioning parameter, but it is also applicable for all dependent
features which are affected by a modeling operation.

6. CONCLUSIONS

A novel approach has been presented that enables thin clients in
a client-server collaborative modeling environment to provide
their users with direct manipulation facilities on a feature
model. These are made possible by the use of feature skeletons,
a compact parametric representation of the features in a model
and their relations, which are maintained at the system's thin
clients. Features represented by skeletons can be visualized and
manipulated in real-time, by means of several types of handles,
allowing users to locally specify a modeling operation in an
interactive manner, and giving them insight into its results, prior
to recurring to the modeling server for its actual execution.

Future work in this project will clarify which validity
criteria can be handled at the client and which cannot.

REFERENCES
[1] Teamcenter, UGS PLM Solutions. Maryland Heights,

MO, USA, www.eds.com/products/plm/teamcenter, May
2004.

[2] Pro/ENGINEER Design Collaboration. PTC, Needham,
MA, USA, www.ptc.com, May 2004.

[3] CoCreate Software Inc., Fort Collins, CO, USA,
www.cocreate.com, April 2004.

[4] ImpactXoft, San Jose, CA, USA, www.impactxoft.com,
January 2004.

[5] van Emmerik, M.J.G.M. A direct manipulation technique
for specifying 3D object transformations with a 2D input
device. Computer Graphics Forum 9(4): 355-361, 1990.

[6] Bidarra, R., van den Berg, E. and Bronsvoort, W.F. A
Collaborative feature modeling system. Journal of
Computing and Information Science in Engineering 2(3):
192-198, 2002.

[7] The Web3D Repository. www.web3d.org/vrml/vrml.htm,
May 2003.

[8] Kaon Interactive Inc. Maynard, MA, USA,
www.kaon.com, December 2003.

[9] RealityWave Inc. Cambridge, MA, USA,
www.realitywave.com, January 2004.

[10] Eastman, P. Art of Illusion. www.artofillusion.org,
February 2004.

[11] Bronsvoort, W. F. and Noort, A. Multiple-view feature
modelling for integral product development. Accepted for
publication in Computer-Aided Design, 2004.

[12] Bronsvoort, W.F., Bidarra, R. and Noort, A. Feature model
visualization. Computer Graphics Forum 21(4): 661-673,
2002.

[13] Bidarra, R. and Bronsvoort, W.F. Semantic feature
modelling. Computer-Aided Design, 32(3): 201–225,
2000.

