Next Event Estimation++ Visibility Mapping for Efficient Light Transport Simulation

Jerry Guo, *Martin Eisemann & Elmar Eisemann TU Delft, *TH Köln

$$L(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{\Omega} f_s(\mathbf{x}, \omega_i, \omega_o) L_i(\mathbf{x}, \omega_i) G(\mathbf{x}, \omega_i, \omega_o) d\omega_i$$

Sensor

 L_e Emitting luminance

 f_S Bi-directional scatterding distribution function

 L_i Incident luminance

Geometry term

$$L(\mathbf{x},\omega_o) = L_e(\mathbf{x},\omega_o) + \int_{\Omega} f_s(\mathbf{x},\omega_i,\omega_o) L_i(\mathbf{x},\omega_i) G(\mathbf{x},\omega_i,\omega_o) \mathrm{d}\omega_i$$
 Sensor

$$L(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{\Omega} f_s(\mathbf{x}, \omega_i, \omega_o) L_i(\mathbf{x}, \omega_i) G(\mathbf{x}, \omega_i, \omega_o) d\omega_i$$

$$L(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{S^2} f_s(\mathbf{x}, \mathbf{x}_i, \omega_o) L_i(\mathbf{x}, \mathbf{x}_i) G(\mathbf{x}, \mathbf{x}_i) V(\mathbf{x}, \mathbf{x}_i) d\mathbf{x}_i$$

$$L(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{S^2} f_s(\mathbf{x}, \mathbf{x}_i, \omega_o) \mathbf{L}_i(\mathbf{x}, \mathbf{x}_i) \mathbf{G}(\mathbf{x}, \mathbf{x}_i) V(\mathbf{x}, \mathbf{x}_i) d\mathbf{x}_i$$

$$L(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{S^2} f_s(\mathbf{x}, \mathbf{x}_i, \omega_o) L_i(\mathbf{x}, \mathbf{x}_i) G(\mathbf{x}, \mathbf{x}_i) \mathbf{V}(\mathbf{x}, \mathbf{x}_i) d\mathbf{x}_i$$

Light sample occuluded

BVH traversal

Rendering with Visibility Map

$$\hat{L}_{rr} = L_e + \begin{cases} \frac{f_s LGV(x'',x')}{\tilde{V}(x'',x')p(x'')} & \xi < \tilde{V}(x'',x') \\ 0 & else \end{cases}, \xi \sim U[0,1]$$

$$\hat{L}_{rr} = L_e + \begin{cases} \frac{f_s LGV(x'',x')}{\tilde{V}(x'',x')p(x'')} & \xi < \tilde{V}(x'',x') \\ 0 & else \end{cases}, \xi \sim U[0,1]$$

$$E[\hat{L}_{rr}] = L_e + \tilde{V}(x'', x') \times E\left[\frac{f_s LGV(x'', x')}{\tilde{V}(x'', x')p(x'')}\right] + (1 - \tilde{V}(x'', x')) \times 0$$

$$\hat{L}_{rr} = L_e + \begin{cases} \frac{f_s LGV(x'',x')}{\tilde{V}(x'',x')p(x'')} & \xi < \tilde{V}(x'',x') \\ 0 & else \end{cases}, \xi \sim U[0,1]$$

$$E[\hat{L}_{rr}] = L_e + \tilde{V}(x'', x') \times E[\frac{f_s LGV(x'', x')}{\tilde{V}(x'', x')p(x'')}] + (1 - \tilde{V}(x'', x')) \times 0$$

= $L_e + E[f_s LGV] = L$.

$$\hat{L}_{rr} = L_e + \begin{cases} \frac{f_s LGV(x'', x')}{\tilde{V}(x'', x')p(x'')} & \xi < \tilde{V}(x'', x') \\ 0 & else \end{cases}, \xi \sim U[0, 1]$$

	rMSE		
	4 SPP	64 SPP	1024 SPP
NEE	5.82e-2	3.24e-2	2.12e-2
NEE++	5.91e-2	3.33e-2	2.18e-2
Ratio	1.01	1.03	1.03

	Shadowrays		
	4 SPP	64 SPP	1024 SPP
NEE	5.45e+6	8.72e+7	1.40e+9
NEE++	1.19e + 6	1.92e + 7	3.07e + 8
Ratio	0.22	0.21	0.22

Visibility Based Rejection Sampling

	Run	Runtime Visibility Tests		
	4 SPP	64 SPP	1024 SPP	
NEE	1.26s	5.47s	82.4s	
NEE++	0.43s	1.54s	24.9s	
Ratio	0.34	0.28	0.30	

$$L(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{S^2} f_s(\mathbf{x}, \mathbf{x}_i, \omega_o) \mathbf{L}_i(\mathbf{x}, \mathbf{x}_i) \mathbf{G}(\mathbf{x}, \mathbf{x}_i) V(\mathbf{x}, \mathbf{x}_i) d\mathbf{x}_i$$

$$L(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{S^2} f_s(\mathbf{x}, \mathbf{x}_i, \omega_o) L_i(\mathbf{x}, \mathbf{x}_i) G(\mathbf{x}, \mathbf{x}_i) V(\mathbf{x}, \mathbf{x}_i) d\mathbf{x}_i$$

Sample light based on visibility

Sample light based on visibility

Each physical light source links to a list of voxels

Sample light based on visibility

Each physical light source links to a list of voxels

Build light distribution according to scattering voxel

Sample light based on visibility

Each physical light source links to a list of voxels

Build light distribution according to scattering voxel

Sample light distribution

Sample light based on visibility

Each physical light source links to a list of voxels

Build light distribution according to scattering voxel

Sample light distribution

Other sampling strategies

Sample light based on visibility

Each physical light source links to a list of voxels

Build light distribution according to scattering voxel

Sample light distribution

Other sampling strategies

Uniform

Sample light based on visibility

Each physical light source links to a list of voxels

Build light distribution according to scattering voxel

Sample light distribution

Other sampling strategies

Uniform

Power

Sample light based on visibility

Each physical light source links to a list of voxels

Build light distribution according to scattering voxel

Sample light distribution

Other sampling strategies

Uniform

Power

Spatial

Camera subpath	Light subpaths	
_ 1	\bar{Y}_1 :	
X:	\bar{Y}_2 :	
	•••	

Classroom

Bathroom

Implementation Details

Grid resolution 16x16x16

Higher resolution does not result in better result

Implementation Details

Map 4096x4096

Implementation Details

Map 4096x4096

Explicit visibility samples: 16 is good enough

Conclusion

Visibility mapping for light transport simulation

Simple to implement and plug into existing solutions

Effective, robust and efficient

Conclusion

Visibility mapping for light transport simulation

Simple to implement and plug into existing solutions

Effective, robust and efficient

Limitations

Scenes with simple visibility

Scenes with non-physical light source

Conclusion

Visibility mapping for light transport simulation

Simple to implement and plug into existing solutions

Effective, robust and efficient

Limitations

Scenes with simple visibility

Scenes with non-physical light source

Future work

Interactive light transport

Thank you!

Next Event Estimation++ Visibility Mapping for Efficient Light Transport Simulation

Jerry Guo, *Martin Eisemann & Elmar Eisemann TU Delft, *TH Köln

