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Explainable neural models have gained a lot of attention in recent years. However, conventional
encoder-decoder models do not capture information regarding the importance of the involved latent
variables and rely on a heuristic a-priori specification of the dimensionality of the latent space or
its selection based on multiple trainings. In this paper, we focus on the efficient structuring of the
latent space of encoder-decoder approaches for explainable data reconstruction and compression. For
this purpose, we leverage the concept of Shapley values to determine the contribution of the latent
variables on the model’s output and rank them according to decreasing importance. As a result, a trun-
cation of the latent dimensions to those that contribute the most to the overall reconstruction allows
a trade-off between model compactness (i.e. dimensionality of the latent space) and representational
power (i.e. reconstruction quality). In contrast to other recent autoencoder variants that incorporate
a PCA-based ordering of the latent variables, our approach does not require time-consuming training
processes and does not introduce additional weights. This makes our approach particularly valuable for
compact representation and compression. We validate our approach at the examples of representing
and compressing images as well as high-dimensional reflectance data.
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1. Introduction

The rapid progress in deep learning has led to huge improve-
ments in numerous application areas including data reconstruc-
tion, compression and streaming, where explainability of the
model’s behavior and decisions is of particular importance. Re-
spective approaches including autoencoders rely on the core idea
of encoding the information extracted from the input data in
another latent space, from where it can be decoded back to
the original domain. Powerful and compact representations can
then be obtained based on the combination of an information
bottleneck, i.e. choosing the dimensionality of the latent space
to be lower than the input dimensionality so that only the most
salient features are preserved, and appropriate loss functions.

In this paper, we put our attention to the challenging problem
of the efficient specification of a convenient dimensionality of
the latent space that preserves model accuracy for respectively
considered tasks.
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So far, most approaches for designing encoder-decoder sche-
mes have been based on a heuristic specification of the number
of latent dimensions, i.e. without an actual explanation why
the respective dimensionality has been chosen and without an
analysis regarding the dimensionality that best suits the par-
ticular application. In contrast, determining a suitable number
of latent variables has also been addressed for some encoder-
decoder approaches (e.g. [1,2]) that are trained with different
numbers of latent variables, where finally the dimensionality
leading to the best trade-off between small dimensionality of the
latent space and reconstruction quality is chosen. However, this
procedure is very time-consuming, since the encoder-decoder
needs to be trained anew for each number of latent variables,
and, for high-dimensional latent spaces, such a repeated training
may even be infeasible. Instead, we propose a novel approach for
the specification of a suitable dimensionality of the latent space
by analyzing the contribution of the individual latent dimensions
and their respective ranking in encoder-decoder schemes based
on their Shapley values [3]. The concept of Shapley values has
originally been introduced in cooperative game theory for feature
attribution, and we leverage this concept similar to the compu-
tation of a natural ordering of the components regarding their
contribution based on principal component analysis (PCA) [4,5],
but instead for the more general non-linear relationship that
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typically allows autoencoders to find more flexible and more
powerful latent spaces. While the latent space of an autoencoder
exhibits compactness with respect to the original data domain,
it does not allow gaining structural information of the latent
space as in the case of a PCA. More sophisticated autoencoder
variants [6,7] allow the ordering of the dimensions of the la-
tent codes according a decreasing importance with respect to
the input data while preserving statistically independent com-
ponents. However, these approaches are based on progressively
increasing the dimensionality of the latent space, i.e. learning one
new dimension per step. Instead, our approach avoids such a
progressive adaption of the required dimensionality by the direct
use of the contribution of individual latent dimensions according
to their Shapley values. The computation of the contributions
of individual latent dimensionalities and their ordering in terms
of the Shapley value based analysis can be applied at different
times during training as long as the training loss does not sig-
nificantly change over the epochs anymore. In the scope of our
experiments, we will compare the results of applying the Shapley
value based analysis in the middle of the training and at the
end of the training. We investigate the beneficial combination of
Shapley values and encoder-decoders regarding the choice of the
dimensionality of the latent space, the ordering of the involved
latent variables according their importance and the respective
capability for reconstruction and compression. This is motivated
by the fact proven in the paper that in case of a linear model the
ordering based on Shapley values is the same as the one after the
singular value decomposition and, hence, optimal. In summary,
the key contributions of this paper are:

e We present novel method for ranking the latent variables
in an encoder-decoder, based on their contribution to the
result, and the subsequent specification of a suitable dimen-
sionality of the latent space.

o We demonstrate the benefits of our approach by evaluations
on various different application scenarios.

e We provide the theorem and the proof of the optimality of
the Shapley ordering in the linear case.

2. Related work

The complexity of the concept of interpretability [8,9] makes
a general interpretation regarding a model’s behavior/decisions
intractable. The key objective of feature attribution methods that
focus on local interpretability is the identification of relevant
features based on a scalar attribution score, relevance score [10]
or contribution [11] that defines how much each input feature
contributes to a model’s behavior. However, a limited theoret-
ical understanding as well as the lack of reliable quantitative
metrics for evaluating explanations in case on ground truth is
available [12] may lead to unreliable or even misleading results
that may still appear visually appealing [12-15]. This problem
has been addressed based on incorporating desirable axioms into
the attribution method [13,16-19]. These axioms have to be
fulfilled by any explanation obtained from the respective attri-
bution methods and allow the design of attribution methods
with theoretical guarantees [17]. In the context of deep learning,
backpropagation-based attribution methods rely on the idea of
computing the attribution based on backward passes through
the network. Examples include the computation of attributions
by exploiting gradients that carry the information regarding the
local perturbations of features that mostly influence the output.
Here, attributions can be obtained in terms of saliency maps [20],
that refer to the gradient of the class score with respect to the
input image, or by elementwise multiplications of input data
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and signed gradients (GradientxInput) [21]. However, this ap-
proach only provides local information in case of highly non-
linear functions and, hence, not suitable to compute marginal
contributions of features. Therefore, other approaches such as
Layer-wise Relevance Propagation (LRP) [10,18], DeepLIFT vari-
ants [11,21] and Integrated Gradients [17] make use of different
propagation rules in comparison to the use of the instant gradient
in the GradientxInput approach. However, perceptually similar
inputs with the same predicted labels may be interpreted dif-
ferently as even small random perturbations affect the feature
importance and systematic perturbations may change the inter-
pretation while keeping the label [14]. In contrast, perturbation-
based approaches rely on the computation of the relevance of
input features by analyzing the behavior of a neural network in
case of feature removal or perturbation [22-24].

A related classical concept developed in the domain of co-
operative game theory in order to distribute the contribution
of individual players in a cooperative game while fulfilling de-
sirable axioms is given by the Shapley values [3] and resulting
feature attributions even seem to agree to human intuition [19].
As discussed in literature, computing exact Shapley values re-
mains an NP-hard problem [25] and, in practice, can only be
performed for less than 20 to 25 players (i.e. input features in
our case respectively). For this reason, much effort was spent
on finding adequate approximations of Shapley values such as
in terms of sampling-based methods [26-29] as well as on in-
vestigating new classes of additive feature importance measures
for particular predictions as denoted by SHapley Additive ex-
Planations (SHAP) [19]. To avoid the rapidly increasing number
model evaluations for increasing numbers of input features, ad-
ditional lasso regression has been used in KernelSHAP [19] and
its respective extensions towards global interpretability [30], dif-
ferent importance metrics and feature packing [31], handling
dependent features [32,33] and producing additional types of
explanations [34] such as explaining whether samples are likely
to a certain class, why prediction differ depending on the obser-
vations and when the model has a bad performance. Furthermore,
approximations based on the assumption of model linearity have
been proposed (such as DeepSHAP) [19] and extended to mixed
model types [35] in terms of a layerwise propagation of Shapley
values built upon DeepLIFT [11,21]. This also enables computa-
tional tractability for obtaining exact Shapley values for certain
model types like tree-based models [36], such as random forests
or gradient boosted trees, and allows attributing stacks of mixed
models such as the feature extraction of neural networks into
a tree model and also attributing loss functions. Polynomial ap-
proximations for specific games such as voting games [37] allow
a polynomial-time approximation of Shapley values as shown
with Deep Approximate Shapley Propagation (DASP) [38]. Fur-
ther work includes extensions towards global explainability (by
combining the Shapley value concept with Lorenz zonoids [39]
to combine the advantages of the local Shapley value based
approach with the properties of the Lorenz Zonoids), the general-
ization of Shapley values to the Shapley-Taylor index that reflects
attributions of subsets of features [40] and the exploitation of
assumptions regarding the underlying data structures [41]. As
a counterpart, Shapely Residuals [42] have been introduced to
capture the information not preserved by Shapley values.

However, most of the approaches for calculating Shapley val-
ues rely on post-hoc explanations. Therefore, the explanation
approach cannot be used for designing and training models. Gen-
eralized Additive Models (GAM) based on tree boosting [43,44] or
neural networks [45] allow the simultaneous prediction and com-
putation of the corresponding exact SHAP explanation, but their
representational is power inherently limited. Instead, Shapley
Explanation Networks [46] rely on directly incorporating Shap-
ley values as the learned latent representations in deep neural
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networks. SHapley Additive exPlanations connect local expla-
nations with optimal credit allocation and has been used to
rank input variables for identification and prediction of failure
modes [47]. Furthermore, Shapley value based error apportion-
ing (SVEA) [48] has been introduced where the key idea is the
apportioning of the total training error among the features and
Ghorbani and Zou [49] focus on equitable data valuation in the
context of supervised learning, where data Shapley values are
used to rate the contribution of each training sample to the pre-
diction performance. Covert et al. [50] focused on explainability
in terms of simulating the effect of feature removal to determine
the influence of individual features. Their framework analyzes
how features are removed for different methods, the respectively
explained model behavior, and how methods summarize the fea-
tures’ contributions. In addition, by assigning contribution scores
to edges instead of nodes within a causal graph structure, Shap-
ley Flow [51] generalizes the Shapley value axioms to directed
acyclic graphs. Ghorbani and Zou [52] used Shapley values for
quantifying the importance of individual neurons for network
predictions and performance. This allows a more efficient identi-
fication of important filters in comparison to the use of activation
patterns. Furthermore, Ma et al. [53] considered Shapley values in
the scope of Bayesian networks and showed a relation between
Shapley values and conditional independence.

We exploit feature attribution based on Shapley values in
encoder-decoder frameworks to efficiently structure the latent
space by ordering the latent variables according to their impor-
tance and exploit this strategy for explainable data reconstruction
and compression.

Aside from feature attribution, several works specifically focus
on data compression to allow efficient storage and transmission
of contents through constrained channels, where in particular
neural image compression has gained a lot of attention in recent
years. The targeted tradeoff of determining an as-compact-as-
possible binary representation (i.e. lowest rate bitstream) while
preserving a certain level of fidelity (i.e. minimum distortion) of
the data has been investigated in terms of autoencoder architec-
tures with quantization and entropy coding. Such compressive
autoencoders [54-56] rely on also minimizing the combination
of rate and distortion during training and have been improved
by multi-scale extensions of the encoder and/or decoder [57-59]
or adding generalized divisive normalization (GDN) layers [56,
60]. Furthermore, end-to-end training can be achieved based on
replacing the non-differentiable quantization by differentiable
proxies [55,61,62]. In addition, hyperpriors [63] and contextual
models [64-68] have been used to improve entropy coding. Sev-
eral works also focus on adversarial training schemes to achieve
very low rates [58,69,70].

Targeting variable rate image compression, traditional com-
pression methods were based on quantizing Discrete Cosine
Transform (DCT) coefficients according to the target rate. Further
techniques include the learning of rate-specific bottleneck scaling
(i.e. scaling the bottleneck features before quantization) [55], the
modulation of intermediate features based on modulated autoen-
coders (MAEs) [71] and conditional autoencoders (cAEs) [72],
the use of recurrent neural networks [54] and the use of a
multi-scale decomposition network where each scale targets a
different rate. Furthermore, increasing the efficiency of deep
learning for resource-limited scenarios as occurring for tablets or
smartphones has been generally addressed in terms of search-
ing lightweight architectures [73-75], integer and binary net-
works [76-78], automatic architecture search [79], or adjusting
the width of layers to achieve a trade-off between computational
efficiency and accuracy based on slimmable neural networks [80].
In the scope of neural image compression, network architecture
search [81] or progressive ecoding [82] have been used to address
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runtime and latency respectively. However, memory require-
ments and the computational burden do not change significantly
and only a single rate-distortion tradeoff is considered which
prohibits flexibility regarding rate, memory or the computational
burden. To increase the practicality of neural image compression,
slimmable compressive autoencoders [83] also allow controlling
computation, memory and rate. While these approaches have
shown great potential in the context of image compression, our
approach represents a powerful alternative that can be combined
with these approaches and can be applied to any compression
method, which utilizes an encoder-decoder.

3. Structuring and pruning of latent space representations

Data reconstruction and compression techniques often rely on
the transformation of the input data into a lower-dimensional
latent space that describes the most salient features. Here, the
dimensionality of the latent space has to be chosen to adequately
represent the distribution of the input data while allowing an as-
compact-as possible latent representation. This trade-off between
reconstruction accuracy and compression rate has to be carefully
considered depending on the underlying task and its implications.
For this purpose, we have to focus on the following central que-
stions:

1. What is a suitable choice for the dimensionality of the
latent space, i.e. how many latent variables are required?

2. Can we relate the lossy compression induced by discarding
dimensions to individual features’ importance?

3. Does the structure of the latent space exhibit insights on
how much we gain by taking less or more latent variables,
thereby allowing the efficient control for the specification
of a suitable dimensionality of the latent space without
the need of having to train different autoencoders for each
dimensionality like in the approach by Rainer et al. [1]?

Gaining control over latent variables and the ability to detect
the contribution of each dimension to the overall performance
of the model is an important step towards explainable models.
In fact, we would even wish to determine the contribution of
sets of important dimensions, i.e. we would like to get insights
regarding which subsets of k dimensions exhibit the largest im-
portance instead of taking the k individually most contributing
features. That way, we can order the dimensions according their
contribution and, hence, structure the latent space, which, in turn,
allows taking the first most important k dimensions to get a
rank-k approximation of the data for lossy compression.

In the following, we first provide an overview on how these
questions have been handled in the scope of linear approaches.
In this regard, we will demonstrate that, in the linear case, where
the Eckart-Young-Mirsky theorem states how low-rank approx-
imation can be approached, the ordering of the eigenvectors
according to their Shapley values is equal to the ordering of
the corresponding singular values. Then, we motivate why these
questions become much more challenging in the case of non-
linear models such as autoencoders and finally devise a strategy
towards an efficient model that helps answering the aforemen-
tioned questions. Due to the properties of Shapley values that
directly measure contributions of individual components, we aim
at analyzing whether these could also serve in these non-linear
scenarios (where the Eckart-Young-Mirsky theorem would not
be applicable) and experimentally address these questions.

3.1. Latent space representations in linear models

Before analyzing whether the properties of Shapely values
regarding their capability to directly measure contributions of
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individual components make them suitable for non-linear scenar-
ios as given for encoder-decoder architectures, we first demon-
strate that in the linear case, where the Eckart-Young-Mirsky
theorem states how low-rank approximation can be approached,
the ordering of the eigenvectors according to their Shapley values
is equal to the ordering of the corresponding singular values.

In case of a linear relationship Ax = y between inputs x and
model outputs y, we can compute the best rank-k approximation
Ai to A in the L,-norm in terms of an analytical solution, i.e. by
performing a singular value decomposition of A = UX'V*, as pos-
tulated by the Eckart-Young-Mirsky theorem [84]. This low-rank
approximation Ay is given by

k
A = Z(Uiuivfk)a (1)
i=1

where o; are the singular values, u; are the columns of U and
v; are the columns of V. Classical low-rank approximations such
as SVD-based approaches and respective robust variants [4,5,
85] have been proven to work for matrix-based data. However,
the extension of these methods to higher-dimensional data is
not straight-forward and comes at the loss of some of their
underlying unique properties. For this reason, higher-order ten-
sor decomposition models such as multilinear SVD [86], higher-
order orthogonal iteration (HOOI) and the higher order power-
method (HOPM) [87] as well as the CANDECOMP/PARAFAC (CP)
model [88,89] and the Tucker tensor model [90] have been widely
applied. Tensor decomposition can be interpreted as a general-
ization of the SVD approach to higher-order tensor data and the
original data can be approximated based on a rank-reduced ten-
sor decomposition [91,92]. Furthermore, latent variable models
such as factor analysis [93] and probabilistic principal compo-
nent analysis [94-96] exploit low-dimensional features to define
powerful generative models.

3.2, Latent space representations in non-linear models

In contrast to linear models, deep neural networks enable
non-linear mappings [97,98] and have demonstrated their power
in modeling high-dimensional data. Autoencoders focus on the
reconstruction of the inputs by first using an encoder e to project
the input data to a latent space, which is followed by a decoder
d that transfers the latent code back into the original domain to
get a reconstruction of the input.

Therefore, their objective consists of minimizing reconstruc-
tion errors given by the reconstruction loss, where specific per-
formance metrics v such as the L,-norm are widely used. To
prevent autoencoders from directly copying the inputs and in-
stead force the encoder to learn useful properties of the data,
autoencoders typically constrain the latent representation to be
lower-dimensional than the input, thereby enforcing them to
instead capture the most salient features of the input. In addi-
tion, if the latent space has lower dimensionality than the input
space X, the latent vector e(x) can be regarded as a compressed
representation of the input x € X. Ideally, the dimension of the
latent space should be chosen according to the complexity of the
considered problem.

Unfortunately, the latent space is not represented in terms
of independent components that can be ordered according to a
decreasing relevance for the data as in the case of the PCA. Hence,
there is no analytical solution for rank-k approximation problems
equivalent to the case of PCA that provides insights regarding
the top-k latent components that together most contribute to
the reconstruction quality. This induces the initial prerequisite
to design a neural network architecture that suits the require-
ments of a particular task by manually selecting the number
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of latent variables which, a-priori, is non-trivial. A reasonable
and widely followed approach is choosing a sufficiently high
number of dimensions of the latent space and adding a respective
regularization term.

In fact, we would instead wish to rate the contributions of
latent dimensions based on a function ¢ that fulfills the following
three axioms:

1. Zero-player: Latent variables that do not contribute to the
resulting output should be assigned the weight 0 (or a
baseline value).

2. Symmetry: The loss should not depend on the ordering of
the latent variables but instead only on their presence.

3. Efficiency: Contributions of individual latent variables sum
up to the contribution of all latent variables.

For the sake of explainability in terms of getting insights on
the structure of the latent space, it would be useful to have a
respective ordering of components according to an importance
score and the respectively resulting error induced by rank-k ap-
proximation similar to the ordering in terms of singular values
in the linear case. A naive way to approach this goal is the
training of several autoencoders with different numbers of latent
variables [2]. As a result, the corresponding error for each number
of dimensions is obtained and, hence, the dimensionality that
results in the best trade-off between dimensionality of the latent
space and reconstruction quality can be selected. However, the
multitude of involved training procedures make this procedure
time- and resource-demanding.

In contrast, the PCA-like autoencoder [6] and the principal
Component Analysis Autoencoder (PCAAE) [7] organize the di-
mensions of the latent space in decreasing importance with re-
spect to the input data while preserving statistically independent
components. For this purpose, these approaches rely on pro-
gressively increasing the dimensionality of the latent space and
learning one new dimension per step as well as extending the
standard autoencoder reconstruction loss by an additional co-
variance loss applied to the latent codes to enforce statistically
independent latent space components. However, this procedure
is very time-consuming, as the decoder needs to be re-trained
with every additional dimension. Instead, we propose to leverage
the ordering of the latent variables according to their contribution
defined in terms of Shapley values [3], a concept of game theory
for computing the contribution of players in a cooperative game.

3.3. Shapley value guided latent representation

In the scope of a cooperative game, Shapley values [3] as-
sign the participating players, in our case latent variables, their
respective contribution to the overall task, in our case the recon-
struction of the latent code through the decoder. More formally,
the Shapely value ¢;(v, N) of a latent dimension i is calculated as

Si'(n—|S] —1)!
o.My = 3 BB D6 gy — usy), )

n!
SCN\{i}

where v is a coalition function that maps each subset S € N
of the players to real numbers, which represent the outcome of
the game when players in S participate in it. In our scenario, N
is the set of n = |N| latent dimensions and the function v can
be adapted for a decoder function d by defining the baseline as
discussed by Ancona et al. [38]. This way we replaced v(S) in
(2) by d(zs) and zs denotes the original latent vector z where
all entries not included in S are replaced with the baseline value,
which is zero in our case. Since we have to process more than one
latent vector in order to calculate the contribution of one latent
dimension, we randomly choose a set of m example latent vectors
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from the space of all possible ones and average the resulting
contributions.

Shapely values fulfill several desirable axioms and in particular
the three axioms described in Section 3.2, which are of great
relevance for our envisioned objective of ranking individual latent
variables according to their contributions and specifying which
set of them to keep for an as-compact-as-possible but still pow-
erful latent representation. Since we are interested in the correct
ordering of the latent dimensions according their descending
contribution, we need to validate that the ordering according
to the Shapley values exhibits this property. Therefore, we first
prove that in the case of a linear model the ordering according to
the Shapley values is optimal:

Theorem 1. Let A € R™ " be a real matrix with m > nand A =
UXVT be the singular value decomposition of A, where X is an mxn
diagonal matrix with entries o4, ..., oy, such that o1 > -+ > oy
Furthermore, let N = {u, ..., u,} be the set of left-singular vectors,
i.e. the columns of U. Let v be a function, which assigns a set S € N
the corresponding reconstruction error, i.e. v(S) = ||A — As||, where
As = Y. .soiujv] denotes the approximation of the matrix A with
the vectors from the set S. Then for all pairs i,j with i # j the
following holds: o; > o; < ¢i(v,N) < ¢j(v, N), where ¢;(v, N)
is defined according to (2).

We provide the proof of this theorem in the supplemental.
Note that in our case v is not a function of the reconstruction
error but a function of the actual reconstruction, i.e. the decoder.
We can still apply the theorem, if we change (v(S U {i}) — v(S)) in
(2) to the absolute value, as used in the remainder of our paper.
As a direct corollary to this theorem we conclude that the first
k elements according to the Shapley values constitute the best
rank-k approximation of a linear model A.

In other words, the aforementioned Theorem 1 demonstrates
that, in the linear case, where the Eckart-Young-Mirsky theorem
states how low-rank approximation problem can be approached,
the ordering of the eigenvectors according to their Shapley values
is equal to the ordering of the corresponding singular values. In
our work, we additionally (experimentally) investigate whether
the properties of Shapley values in terms of being a measure for
the contribution of individual components also brings benefits for
non-linear scenarios, where the Eckart-Young-Mirsky theorem
would not be applicable.

Unfortunately, the computation of exact Shapley values re-
mains an NP-hard problem [25] and is feasible only for a very
limited number of less than 20 to 25 players or, in our case, latent
dimensions respectively. Recently, Deep Approximate Shapley
Propagation (DASP) [38] has been introduced as an approach
that allows incorporating desirable axioms in the scope of a
polynomial-time approximation of Shapley values which makes
them suitable for being used in deep neural networks. We use this
approach to approximate the Shapley values of the latent dimen-
sion for our purposes. The Shapley values are then approximated
by the average of the expected contribution to a random coalition
according to

n—1

1
Elgi] = - ) Bl (3)

j=0

Here the expectations E; are calculated over the distribution
of sets of size j and E;[¢; ;] denotes the contribution of the latent
entry z; to any random coalition of size j. Ej[¢; ;] is then calculated
as follows:

Ei[¢ij] = |

[d(zsugiy)] — [d(zs)]| (4)

E E
SCN\{i},IS|= SCN\{i},IS1=i

As already described, we use the absolute value instead of the
difference. If our decoder function outputs values with more than
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one dimension, as it does for example in the case of RGB values,
then the difference in (4) is computed componentwise and then
we sum over all dimensions of the output.

3.4. Choice of the latent space dimensionality

In order to choose an appropriate dimensionality for the latent
space that allows capturing the most salient features in an as-
compact-as-possible latent representation, we start the training
of the network with a sufficiently (i.e. typically too) large number
of dimensions of the latent space, thereby following the intuition
that a too large size of the latent space can be determined quite
easily. To be sure that the initial “big drop-off’ of the loss is
passed and we reach a plateau-like behavior, we let the training
progress for half the number of the epochs of a full training.
We then compute the contribution of each latent dimension
in terms of their Shapley values and order the dimensions in
a descending order according to these contributions. Note that
in earlier epochs of the training the adaptions to the network
weights, and hence also the adaptions of the distribution of data
in the latent space, are strongly changing. Therefore, Shapley
value based contribution assignments to individual dimensions of
the latent space would provide less insights there while requiring
a computational overhead, and, hence, we apply the Shapley
value based analysis only when approaching a plateau-like be-
havior of the loss. Subsequently, we compute the loss for each set
of the h first dimensions. Based on the cumulative contribution
and cumulative loss we choose the dimensionality k of the latent
space and also specify which of the latent variables to take for the
continuation of the training by taking a reference of the coverage
percentage of the contributions, i.e. according to the percentage
of contribution that should be covered. As a result, we prune
the latent space custom-tailored according to the complexity of
the considered application scenario. The training continues with
the same autoencoder as before but without the discarded latent
dimensions and the corresponding neurons in the input layer of
the decoder. The overall training is finished in the same total
amount of epochs as the full training with the only overhead of
the computation of Shapley values. Hence, this strategy does not
require a time-consuming training process based on successively
adding one more dimensions for iteratively conducted trainings.
Instead, it only requires a single training to identify less relevant
latent variables, and several of these latent variables with low
importance can be discarded in a single step. The individual steps
of our approach are presented in Algorithm 1.

Algorithm 1 Shapley value based pruning of latent dimensions

1: Train model for a certain number of epochs with initially
specified number of latent dimensions

2: Select a subset of m samples of the latent codes (obtained for
training examples)

3: Compute approximate Shapley values for the latent variables
based on the selected m samples and the decoder function
(i.e., coalition function), e.g. based on DASP

4: Order the latent variables in descending order w.r.t. the
Shapley values and compute the cumulative contribution and
visualizations

5: Decide from the orderings, cumulative contribution and
visualizations how many dimensions k will be kept

6: Modify the last layer encoder layer and the first decoder layer
by only keeping the connections/neurons belonging to the
first k latent variables

7: Resume the training

Note that the Shapley value based analysis to compute the
contributions of individual latent dimensionalities and their or-
dering can be applied at different times during training. The
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only requirement is that the training loss does not significantly
change over the epochs, but instead is (almost) approaching a
flat decreasing behavior. In the scope of our experiments, we
will compare the effects of conducting the Shapley value based
analysis in the middle of the training as well as at the end of the
training. We observed that the importance of latent dimensions
still changes until the end of the training and performing the
Shapley analysis early might overestimate the number of dimen-
sions that are needed. Instead, to get the best results we should
perform the analysis in the end. However, in the scope of our
experiments we show that for a good estimation it is sufficient to
perform the analysis in the middle of the training to save time,
since the changes of the importance of latent dimensions are only
small afterwards.

4. Experiments

In the following, we validate our approach for determining
a suitable dimensionality of the latent space and the compres-
sion of models. To demonstrate the versatile applicability of our
approach, we focus on a set of different exemplary application
scenarios that differ in the type of data and their respective
complexity. We validate the benefits of incorporating Shapley
values within autoencoder frameworks regarding the choice of
the latent code size and the respective ordering of the dimensions
according their importance at the examples of representing and
compressing images as well as high-dimensional reflectance data.
All experiments were performed on a desktop computer with an
Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40 GHz and an Nvidia Titan
XP GPU with 12 GB of RAM.

4.1. Reflectance representation and compression

First, we demonstrate the potential of our approach for the
task of representing and compressing reflectance data. Bidirec-
tional texture functions (BTFs) f(X, A, w;, w,) have been proven to
accurately capture local material appearance at surface positions
x of a material sample under varying viewing conditions w, and
lighting conditions w; and possibly also depending on the wave-
length A [99], however, at the cost of massive memory consump-
tion. In the scope of our experiments, we used publicly available
BTF datasets provided by Weinmann et al. [100] and particularly
focused on leather, carpet and fabric materials due to their com-
plex reflectance behavior. These measurements come at a high
angular resolution (i.e. 151 x 151 = 22801 light/view configu-
rations with approximately identical samplings of the light and
view configurations) and a spatial resolution of 400 x 400 texels.

The measurements for individual surface positions x are stored
as 4D reflectance functions fx ; (w;, @, ) that are denoted as appar-
ent bidirectional reflectance distribution functions (ABRDFs). In con-
trast to bidirectional reflectance distribution functions (BRDFs),
ABRDFs also capture non-local effects of light exchange at the
surface such as local subsurface scattering, self-masking or self-
shadowing. Finally, material samples are represented in terms of
a matrix A € R™", where the columns represent the ABRDFs of
the m considered surface texels. Recent work on BTF compression
and interpolation, which is particularly required for efficiently
storing and rendering such data, includes the neural approach by
Rainer et al. [1]. In contrast to matrix factorization techniques,
that may cause blurring or ghosting artefacts in case of coarse an-
gular resolution, and the fitting of analytic models with a reduced
representation capability regarding complex non-local lighting
effects, Rainer et al. leveraged the concept of autoencoders to
introduce a neural network-based BTF representation. Here, the
local surface appearance under different viewing and lighting
conditions is first compressed to a latent representation by an
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Fig. 1. MSE errors observed for different BTFs when training with different
numbers of latent variables from scratch (points) vs. when starting training with
64 dimensions and pruning after 200 epochs to a different number of (most
important) latent variables (crosses). We observe that both methods converge
to nearly the same results. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

encoder component, and the decoder decodes the latter with
additional light and view specifications to render the color of a
particular surface point, thereby overcoming limitations based on
a linear interpolation between measurements. However, for each
BTF a new autoencoder needs to be trained. To make a reasonable
choice regarding the dimensionality of the latent space, Rainer
et al. [1] separately trained autoencoders for different numbers
of dimensions of the latent space up to n = 32 and finally
selected 8 latent variables, based on the trade-off between the
compression rate and the reconstruction error. Besides the re-
sulting high computational burden for all these trainings, the
selection of an actually optimal trade-off can only be reached for
the single, considered BTF as the network has been trained for
each BTF separately. From the observations for a single BTF or
a very limited set of BTFs, Rainer et al. concluded 8 dimensions
to be a suitable size of the latent space. However, this chosen
dimensionality may not be adequate for other materials, e.g. with
different or more complex appearance characteristics that had
not been investigated. Indeed, the resulting mean squared error
for the fully trained networks for different numbers of latent
dimensions for 3 BTFs depicted in Fig. 1 reveal that the curves
deviate, i.e. the reconstruction based on the same number of la-
tent dimensions will result in different quality levels for different
materials/BTFs. Instead, a separate analysis of a suitable trade-off
choice of dimensions even further increases the computational
effort to also address these materials. This demonstrates that
the provided trade-off value is not an optimal choice in general,
despite the high computational burden.

In the scope of our experiments, as suggested by Rainer et al.
[1], we applied a log transform as well as a whitening to the
input ABRDFs and used 400 epochs for the full training. On one
GPU, one full training took approximately 4 h. We used DASP to
approximate Shapley values after training for the first 200 epochs.
In order to calculate the Shapley values of the latent dimen-
sions according to the coalition function, which is the decoder
function d in our case, we need to generate some latent vector
examples Z = {z4, ..., zy}. For this we randomly sampled 2000
pairs of view and light directions (out of the 151 x 151 view-
light sampling) for 100 randomly pixels (within the 100 x 100
available ones), resulting in 200000 latent vectors in total. The
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Fig. 2. Cumulative contributions observed when performing Shapley analysis
after half of the training vs. after the full training for leather11 BTF (top), fabricO1
BTF (middle) and carpetO1 (bottom).

Shapley value based analysis took about 8 min and Figs. 2 and 3
depicts the resulting contributions and MSE plots, whereas Figs. 4,
5 and Fig. 1 in supplemental provide respective visualizations. As
a reference, we also show plots and visualizations obtained for
a full training. In Table 1, we present a detailed analysis of the
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Fig. 3. Cumulative errors with respect to the full net, observed when performing
Shapley analysis after half of the training vs. after the full training for leather11
BTF (top), fabricO1 BTF (middle) and carpet01 (bottom).

relationship between the number of latent variables and the time
required to compute the Shapley values with the DASP method.
In Fig. 2, we observe that different BTFs need different numbers
of latent dimensions to achieve the same cumulative contribution
percentage.
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Fig. 4. Visualizations of the material appearance reconstructed based on differ-
ent numbers of latent variables (for h = 1,...,32) for two different pairs of
light and view directions (L = 3,V = 3 (top) and L = 35,V = 100 (bottom),
see Fig. 8) for the material leather11. On the left we see the visualizations after
200 epochs, in the middle the visualizations after 400 epochs and on the right
the visualization according to a random ordering after 200 epochs.

Fig. 5. Visualizations of the material appearance reconstructed based on dif-
ferent numbers of latent variables for two different pairs of light and view
directions for carpet05. Top: L = 3,V = 3 and bottom L = 35V =
100 (see Fig. 8). On the left we see the visualizations after 200 epochs,
on the right the visualization after 400 epochs, each with the first h =
1,4,7,9,10, 13, 16, 19, 22, 25, 28, 32 latent variables according to the Shapley
ordering.

For instance, taking 8 latent variables for the material lea-
ther11 results in capturing about 98% of the contribution of all
latent variables. In contrast, matching this reconstruction quality

Graphics and Visual Computing 7 (2022) 200059

Fig. 6. Visualizations of the material appearance reconstructed based on dif-
ferent numbers of latent variables for two different pairs of light and view
directions for leather11 after training with 32 latent variables (left) and 5
latent variables (right) and their difference. Top: L = 3,V = 3 and bottom
L =35,V =100 (see Fig. 8).

Fig. 7. Visualizations of the material appearance reconstructed based on dif-
ferent numbers of latent variables for two different pairs of light and view
directions for carpetO5 after training with 32 latent variables (left) and 9
latent variables (right) and their difference. Top: L = 3,V = 3 and bottom
L =35,V =100 (see Fig. 8).

Table 1

Relation between the time (in minutes) required to compute the Shapley values
and the number of latent variables. When the number of latent variables doubles,
the time for the computation of Shapley values with DASP increases by a factor
of about four.

8 16 32 64 128
BTF 0,43 1,73 72 30,3 141,6
IC 2,5 10,5 41 171 695

in terms of 98% of the overall contributions requires a dimen-
sionality of 12 for the latent space for the fabricO1 BTF and a
dimensionality of 17 for the latent space for the carpetO5 BTF.
Besides these significant variations of the cumulative contribu-
tions over the number of latent variables, we get evidence that
the fixed choice of 8 latent dimensions independent of the con-
sidered material as used by Rainer et al. [1] can be suboptimal for
different materials.

When analyzing the accumulated contributions (see Fig. 2),
the MSE behavior depending on the number of used dimensions
(see Fig. 3) as well as the corresponding visual depictions (see
Figs. 4, 5 and Fig. 1 in supplemental), we observe that we can
take the first ordered latent variables that contribute to 95%-
96% of the overall reconstruction and continue training with
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Fig. 8. Angles displayed on the unit disk: view direction V (green), light direction L (red). LE eft: L = 3,V = 3 and right: L = 35,V = 100. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

the dimensions 5, 7 and 9 for leather11, fabricO1 and carpet05
respectively. Figs. 6, 7 and Fig. 2 in supplemental in show the
visualizations of these pruned trainings in comparison to the
full training with the initial 32 dimensions. Hence, we achieve
a guidance of the compression that allows using different dimen-
sionalities of the latent spaces to represent different materials
depending on the complexity of their appearance characteristics
which allows a more suitable reconstruction and compression
than taking a single fixed number of dimensions for all materials
as done by Rainer et al.. To analyze whether the ordering of
latent variables according to their Shapley values is reasonable,
we provide a comparison of the ordering of the latent dimensions
according to their Shapley values to a random ordering (Figs. 3,
4). We observe that the random ordering does not allow insights
regarding the choice of a plausible dimensionality of the latent
space in contrast to our approach based on Shapley values.

4.2. Image compression

As already discussed in Section 2, there has been significant
progress in neural image compression and in particular advanced
autoencoder architectures have been demonstrated to be promis-
ing. The targeted trade-off of determining an as-compact-as-
possible binary representation (i.e. lowest rate bitstream) while
preserving a certain level of fidelity (i.e. minimum distortion) of
the data has been investigated in terms of autoencoder archi-
tectures with quantization and entropy coding. One popular ap-
proach for image compression is the lossy compression approach
based on compressive autoencoders by Theis et al. [55]. We used
the publicly available implementation of this approach [https:
//github.com/alexandru-dinu/cae], which combines the proposed
network architecture with the idea of compressing the code with
stochastic binarization [54] instead of rounding it. The benefits
of such stochastic binarization for image compression as de-
scribed by Toderici et al. [54] also include the advantage that
bit vectors are trivially serializable/deserializable which helps in
efficient data transmission. The latent code then exhibits the
form of a binary matrix, where the matrix dimensions directly
correspond to the number of bits stored per image and the MSE
loss is used for the optimization. Each image is pre-processed
in terms of an arrangement of 10 x 6 non-overlapping patches
of size 128 x 128 so that an image is represented based on 60
patches and, hence, based on 60 latent codes. For the subsequent

processing, we took one of the models provided with the imple-
mentation with dimensions of 32 x 32 x 32 (i.e. 32 channels of
size 32 x 32 resulting from the used encoder architecture) and
analyzed, whether and how much we can reduce the dimension
of channels based on the Shapley value based analysis.

Furthermore, for our respective experiments, we used the
YouTube-8M dataset that was taken from [https://research.googl
e.com/youtube8m)/] for training. Due to the missing information
regarding a suitable explicit specification of the number of epochs
during training by Theis et al. [55], we analyzed the behavior
of training and validation losses and concluded 50 epochs to be
a suitable choice for a complete training process. After training
for 25 epochs, i.e. after half of the overall training, we perform
an analysis of the latent space based on Shapley values. For
this purpose, we used the code provided along the DASP ap-
proach [38] and extended their implementation of Lightweight
Probabilistic Deep Networks [101] by the remaining probability
layers required for the underlying architecture that have not been
included in the DASP framework.

Even though using DASP for the approximation of the Shapley
values is quite fast, it still depends on the number m of examples
used for the computation and the time which is used to process
a batch, i.e. forward pass of the decoder. So since the decoder of
this network is a lot more complex than the one used for the BTF
compression, we took less latent codes for Shapley computations
for this application. When using sample sizes of six randomly
selected patches from 21 randomly chosen images, i.e. 126 latent
codes in total, the DASP computation took about 43 min, while
the overall training took about 12 h, i.e. the total time is only
moderately influenced by the DASP computation.

Figs. 9 and 10 show the contributions and MSE curves obtained
by our approach, while Fig. 11 provides a depiction of qualitative
results. We can observe that the first 25 ordered latent variables
contribute to 95% of the reconstruction but after observing the
error plot and some visualizations, we conclude that for this
application taking 22 dimensions, which correspond to 92% of
contribution, is still a reasonable choice for the subsequent train-
ing. Table 2 shows the test error we get if we continue training
with different numbers of latent dimensions. Fig. 12 shows the
results after the continued training with 22 latent dimensions vs.
the full training with 32 channels. Furthermore, Figs. 9 and 10
provide the plots we obtain if we perform the Shapley analysis
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Fig. 9. Cumulative contributions observed when performing Shapley analysis
after half of the training vs. after the full training for image compression.
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Fig. 10. Illustration of the reconstruction error depending on the number of
latent variables that are used for the reconstruction. Note, how the error
decays much quicker when variables are added in the order of their importance
compared to a random selection of the same number of variables (blue vs. green
plot). At the same time, there is no significant difference between applying the
Shapley value based analysis after the full or after half of the training (blue vs.
orange plot). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

after a full training. As demonstrated, the results do not sig-
nificantly change already after 25 epochs, which indicates that
applying the analysis regarding relevant dimensions to be used
for the subsequent training based on Shapley values after half of
the overall training epochs seems a reasonable choice.

To validate that the ordering of latent variables according to
their Shapley values is a good choice, we again compared it to
the random ordering. Fig. 10 depicts the error for the ordering
of the dimensions according to their contribution as computed
by the Shapley values in comparison to a random ordering and
respective qualitative results are provided in Fig. 11.

Since the main effect of our method is the compression of
the latent space, in order to compare to other methods, we
studied the effect of alternatively compressing the latent space
of the autoencoder based on PCA. Fig. 13 shows the error plot
which results if we perform the PCA on the latent matrix and
then reconstruct the latent matrix using different numbers p of
principal components. From this plot and some image series like

10
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Fig. 11. Two different images reconstructed with different numbers of latent
variables and applying the Shapley value based analysis after half of the
training. Left: The latent variables are added in accordance to their estimated
importance. Right: The latent variables are selected randomly. Note how the
random selection leads to a significantly slower convergence. (The blocking
artefacts result from the implementation of tiling the original image into patches
and are not originating from our approach.)

Table 2

Correspondence between the estimated importance from the Shapley analysis to
the final image reconstruction error. While Fig. 13 suggest, that 7 latent variables
are sufficient for good quality (a-priori estimation), this analysis shows that more
variables should be used (a-posteriori analysis).

% Dim of MSE MSE increase  MSE increase per pruned

contribution net compared to  dimension compared to
full net (in %) full net (in %)

58 7 0.00119 75 3

92 22 0.00075 10,3 1,3

95 25 0.00073 7,35 15

98 29 0.00070 3 1

100 32 0.00068 - -

in 14 we observed that 7 principal components already suffice
to reconstruct the image quite well. So if we link the principal
components to the idea of the latent variables and conclude that
we only need to train with 7 latent dimensions, we would see that
PCA under-estimates the required number of latent dimensions.
Fig. 12 shows the reconstructions obtained with the full network,
with a pruned network with 22 channels resulting from our
choice after the Shapley analysis and with a pruned network with
7 channels, as chosen after a PCA analysis. Moreover, Table 2
also reports the procentual increase of the error. We observe that
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Fig. 12. Final image reconstructions achieved after the full training for different
numbers of latent variables.
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Fig. 13. Resulting error if we perform the PCA on the latent matrix and then
reconstruct the latent matrix using different numbers of principal components.
While this plot suggests that a low number of variables may be sufficient for
the final reconstruction, we find that this does not translate to the number of
latent variables required during the training.

with 7 dimensions the quality of the reconstruction is signifi-
cantly reduced as opposed to what we expected when performing
the reconstruction using the PCA. The explanation is that even
though we can use only 7 components, the PCA was performed
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Fig. 14. Images corresponding to the PCA selection strategy shown in Fig. 13.

on the whole set of 32 dimensions which means that this full
dimensionality is still indirectly included and not reduced as in
the case of retraining the network with less dimensions.

Discussion. We experimented with leather11, fabricO1 and car-
pet05 by training with different initial number of latent variables
(32, 64 and 128), performing Shapley analysis in the middle of the
training and observed that we get the same results if we prune
the latent space of a model with 32 and 64 dimensions. If we
prune a model with 128 dimensions, it tends to overestimate the
number of latent dimensions (12 in case of leather, 15 in the case
of fabric and 17 in the case of carpet). One way to overcome this,
when choosing a very large number of dimensions beforehand,
would be to perform the Shapley analysis again in the end of the
training, prune again and continue training (in our case, training
for another 100 epochs was sufficient) to converge to the same
result as the one when starting with 64 or 32 dimensions.

Limitations. While DASP allows a better handling of larger num-
bers of dimensions, the computation of the Shapley values
directly involves the decoder function. As a result, the compu-
tational burden increases with the complexity of the decoder
structure, which results in increasing processing times.

5. Conclusions

We presented a novel approach for efficiently structuring the
latent space for explainable data reconstruction and compression
in a single training process. In particular, we have demonstrated
that leveraging Shapley values to determine the contribution
of the latent variables on the model’s output which, in turn,
allows organizing the latent variables according to a decreasing
importance, discarding several latent variables at the same step
and, finally, specifying a reasonable size of the latent codes. The
truncation obtained when discarding latent variables after the
first k latent variables with most importance results in an effect
similar to a rank-k approximation as achieved when applying PCA
in the linear case. We have demonstrated the relevance of this
approach for compact representation and compression for images
and high-dimensional material appearance.
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Appendix A. Supplementary data

Supplementary material related to this article can be found
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