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A dungeon, in the real world, is a cold, dark and dreadful place where prisoners
are kept. A dungeon, in a computer game, is a labyrinthine environment where ad-
venturers enter at one point, collect treasures, evade or slay monsters, rescue noble
people, fall into traps and ultimately exit at another point. This conception of dun-
geons probably originated with the roleplaying board game Dungeons and Drag-
ons, and has been a key feature of almost every computer role playing game (RPG),
including genre-defining games such as the Legend of Zelda series and the Final
Fantasy series, and recent megahits such as The Elder Scrolls V: Skyrim. Of par-
ticular note is the “roguelike” genre of games which, following the original Rogue
from 1980, features procedural runtime dungeon generation; the Diablo series is a
high-profile series of games in this tradition. Because of this close relationship with
such successful games, and also due to the unique control challenges in their design,
dungeons are a particularly active and attractive PCG subject.

For the purposes of this chapter, we define adventure and RPG dungeon levels
as labyrinthic environments, consisting mostly of inter-related challenges, rewards
and puzzles, tightly paced in time and space to offer highly structured gameplay
progressions [13]. An aspect which sets dungeons apart from other types of levels
is a sophisticated notion of gameplay pacing and progression: although dungeon
levels are open for free player exploration (more than e.g. platform levels), this
exploration has a tight bond with the progression of challenges, rewards and puz-
zles, as intended by game designers. In contrast with e.g. platform levels or race
tracks, dungeon levels encourage free exploration while keeping strict control over
gameplay experience, progression and pacing (unlike open worlds, where the player
is more independent). For example, players may freely choose their own dungeon
path among different possible ones, but never encounter challenges that are impos-
sible for their current skill level (since the space to back track is not as open as, for
example, a sandbox city). Designing dungeons is thus a sophisticated exercise of
emerging a complex game space from predetermined desired gameplay, rather than
the other way around.
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In most adventure games and RPGs, dungeons structurally consist of several
rooms connected by hallways. While originally the term ‘dungeon’ refers to a
labyrinth of prison cells, in games it may also refer to caves, caverns, or human-
made structures. Beyond geometry and topology, dungeons include non-player-
characters (e.g. monsters to slay, princesses to save), decorations (typically fantasy-
based) and objects (e.g. treasures to loot).

Procedural generation of dungeons refers to the generation of the topology, ge-
ometry and gameplay-related objects of this type of levels. A typical dungeon gen-
eration method consists of three elements:

1. A representational model: an abstract, simplified representation of a dungeon,
providing a simple overview of the final dungeon structure.

2. A method for constructing that representational model.

3. A method for creating the actual geometry of a dungeon from its representational
model.

Above, we distinguished dungeons from platform levels. However, there are also
clear similarities between these two types of game level. Platform game levels were
made famous by classic games such as Super Mario Bros, Sonic, the Hedgehog,
and their countless clones and near-clones, as well as by other games that have
drawn inspiration from them; a modern-day example of a game in this tradition that
features procedural level generation is Spelunky, discussed in the first chapter. Like
dungeons, platform game levels typically feature free space, walls, treasures or other
collectables, enemies and traps. However, in the game mechanics of platformers, the
player agent is typically constrained by gravity: the agent can move left or right and
fall down, but can typically only jump a small distance upwards. As a result, the
interplay of platforms and gaps is an essential element in the vocabulary of platform
game levels.

In this chapter, we will study a variety of methods for procedurally creating dun-
geons and platform game levels. Although these methods may be very disparate,
they have one feature in common: they are all constructive, producing only one out-
put instance per run, in contrast with e.g. search-based methods. They also have
in common that they are fast; some were even successful in creating levels at run-
time. In general, these methods provide (rather) limited control over the output and
its properties.The degree of control provided is nowadays a very important charac-
teristic of any procedural method. With ‘control” we mean the set of options that a
designer (or programmer) has in order to purposefully steer the level generation pro-
cess, as well as the amount of effort that steering takes. Control also determines to
which extent editing those options and parameters causes sensible output changes,
i.e. the intuitive responsiveness of a generator. Proper control assures that a genera-
tor creates consistent results (e.g. playable levels), while maintaining both the set of
desired properties and variability.

As PCG methods grow in complexity, and different PCG methods are combined
to form more complex generation processes, meaningful parameters have been de-
veloped to help generate content towards a specific output. As a result, PCG control
is evolving towards more natural and high-level interaction between designer and
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machine, with the use of techniques like declarative modeling [29, 10], controllable
agents [5] and gameplay-based control [14].

We will discuss several families of procedural techniques. For simplicity, each
of these technique will be presented in the context of a single content type, either
dungeons or platform game levels. The first family of algorithms to be discussed
in this chapter is space partitioning. Two different examples of how dungeons can
be generated by space partitioning are given; the core idea is to recursively divide
the available space in pieces and then connect them to form the dungeon. This is
followed by a discussion on agent-based methods for generating dungeons, with the
core idea that agents dig paths into a primeval mass of matter. The next family of al-
gorithms to be introduced is cellular automata, which turn out to be a simple and fast
means of generating structures such as cave-like dungeons. Generative grammars,
yet another family of procedural methods, are discussed next, as they can naturally
capture higher-level dungeon design aspects. We then turn our attention into sev-
eral methods that were developed for generating platform levels, some of which are
applicable to dungeons as well. The chapter ends with a discussion of the platform
level generation methods implemented in the commercial game Spelunky and the
open-source framework Infinite Mario Bros, and its recent offshoot InfiTux. The lab
exercise will have you implementing at least one method from the chapter using the
InfiTux APL

3.1 Space partitioning for dungeon generation

True to its name, a space partitioning algorithm yields a space partition, i.e. a subdi-
vision of a 2D or 3D space into disjoint subsets, so that any point in the space lies in
exactly one of these subsets (also called cells). Space partitioning algorithms often
operate hierarchically: each cell in a space partition is further subdivided by apply-
ing the same algorithm recursively. This allows space partitions to be arranged in a
so-called space partitioning tree. Furthermore, such a tree data structure allows for
fast geometric queries regarding any point within the space; this makes space par-
titioning trees particularly important for computer graphics, enabling, for example,
efficient raycasting, frustum culling and collision detection.

The most popular method for space partitioning is binary space partitioning
(BSP), which recursively divides a space into two subsets. Through binary space
partitioning, the space can be represented as a binary tree, called a BSP tree. Differ-
ent variants of BSP choose different splitting hyperplanes based on some specific
rules. Such algorithms include quadtrees and octrees: a quadtree partitions a two-
dimensional space into four quadrants and an octree partitions a three-dimensional
space into eight octants. We will be using quadtrees on two-dimensional images as
the simplest example, although the same principles apply for octrees, on 3D space,
and for other types of stored data. While a quadtree’s quadrants can have any rect-
angular shape, they are usually equal-sized squares. A quadtree with a depth of n
can represent any binary image of 2" by 2" pixels, although the total number of tree
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(a) Image and partition (b) Quadtree
Fig. 3.1: An example quadtree partition of a binary image (0 shown as red, 1 as
black). Large areas of a single colour, such as those on the right edge of the image,
are not further partitioned. The image is 16 by 16 pixels, so the quadtree has a
depth of 4. While a fully expanded quadtree (with leaf nodes containing information
about a single pixel) would have 256 leaf nodes, the large areas of a single colour
result in a quadtree with 94 leaf nodes. The first layers of the tree are shown in (b):
the root node contains the entire image, with the four children ordered as: top left
quadrant, top right quadrant, bottom left quadrant, bottom right quadrant (although
other orderings are possible).

nodes (and its depth) depend on the structure of the image. The root node repre-
sents the entire image, and its four children represent the top left, top right, bottom
left and bottom right quadrants of the image. If the pixels within any quadrant have
different colors, that quadrant is subdivided; the process is applied recursively until
each leaf quadrant (regardless of size) contains only pixels of the same color (see
Figure 3.1).

When space partitioning algorithms are used in 2D or 3D graphics, their purpose
is typically to represent existing elements such as polygons or pixels rather than
create new ones. However, the principle that space partitioning results in disjoint
subsets with no overlapping areas is particularly suitable for creating rooms in a
dungeon or, in general, distinct areas in a game level. Dungeon generation via BSP
follows a macro approach, where the algorithm acts as an all-seeing dungeon ar-
chitect rather than a ‘blind’ digger as is often the case with agent-based approaches
presented in Section 3.2. The entire dungeon area is represented by the root node of
the BSP tree and is partitioned recursively until a terminating condition is met (such
as a minimum size for rooms). The BSP algorithm guarantees that no two rooms
will be overlapping, and allows for a very ‘structured’ appearance of the dungeon.

How closely the generative algorithms follow the principles of ‘traditional’ par-
titioning algorithms affects the appearance of the dungeon created. For instance, a
dungeon can be created from a quadtree by selecting quadrants at random and split-
ting them; once complete, each quadrant can be assigned a value of 0 (empty) or
1 (room), taking care that all rooms are connected. This creates very symmetric,
‘square’ dungeons such as those seen in Figure 3.2a. Furthermore, the principle that
a leaf quadrant must consist of a uniform element (or of same colour pixels, in the
case of images) can be relaxed for the purposes of dungeon generation; if each leaf
quadrant contains a single room but can also have empty areas allows for rooms of
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Fig. 3.2: In (a) is a dungeon created using a quadtree, with each cell consisting
entirely of empty space (black) or rooms (white). In (b), a dungeon created using a
quadtree, but with each quadrant containing a single room (placed stochastically) as
well as empty space; corridors are added after the partitioning process is complete.

different sizes, as long as their dimensions are smaller than the quadrant’s bounds.
These rooms can then be connected with each other, using random or rule-based
processes, without taking the quadtree into account at all. Even with this added
stochasticity, dungeons are still likely to be very neatly ordered (see Figure 3.2b).

We now describe an even more stochastic approach loosely based on BSP tech-
niques. We consider an area for our dungeon, of width w and height 4, stored in the
root node of a BSP tree. Space can be partitioned along vertical or horizontal lines,
and the resulting partition cells do not need to be of equal size. While generating the
tree, in every iteration a leaf node is chosen at random and split along a randomly
chosen vertical or horizontal line. A leaf node is not split any further if it is below a
minimum size (we will consider a minimal width of w/4 and minimal height of //4
for this example). In the end, each partition cell contains a single room; the corners
of each room are chosen stochastically so that the room lies within the partition and
has an acceptable size (i.e. is not too small). Once the tree is generated, corridors are
generated by connecting children of the same parent with each other. Below is the
high-level pseudo-code of the generative algorithm, and Figure 3.3 and 3.4 shows
the process of generating a sample dungeon.

start with the entire dungeon area (root node of the BSP tree)
divide the area along a horizontal or vertical line
select one of the two new partition cells
if this cell is bigger than the minimal acceptable size:
go to step 2 (using this cell as the area to be divided)
select the other partition cell, and go to step 4
for every partition cell:
create a room within the cell by randomly
choosing two points (top left and bottom right)
within its boundaries
9: starting from the lowest layers, draw corridors to connect
rooms in the nodes of the BSP tree with children of the same
parent
10:repeat 9 until the children of the root node are connected
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Fig. 3.3: Stochastically partitioning the dungeon area A, which is contained in the
root node of the BSP tree. Initially the space is split into B and C via a vertical
line (its x-coordinate is determined randomly). The smaller area B is split further
with a vertical line into D and E; both D and E are too small to be split (in terms
of width) so they remain leaf nodes. The larger area C is split along a horizontal
line into F and G, and areas F and G (which have sufficient size to be split) are split
along a vertical and a horizontal line respectively. At this point, the partition cells
of G (J and K) are too small to be split further, and so is partition cell I of E. Cell
H is still large enough to be split, and is split along a horizontal line into L and M.
At this point all partitions are too small to be split further and dungeon partitioning
is terminated with 7 leaf nodes on the BSP tree. Figure 3.4 demonstrates room and
corridor placement for this dungeon.

While binary space partitioning was here primarily used to create non-overlapping
rooms, it should be noted that the hierarchy of the BSP tree can be used for other as-
pects of dungeon generation as well. The previous example of Figure 3.4 has demon-
strated how room connectivity can be determined by the BSP tree: using corridors



3 Constructive generation methods for dungeons and levels (DRAFT) 37

(©) (d)

(e ®

Fig. 3.4: Room and corridor placement in the partitioned dungeon of Figure 3.3. For
each leaf node in the BSP tree, a room is placed by randomly choosing coordinates
for top left and bottom right corners, within the boundaries of the partition cell (1st
image). Then a corridor is added to connect the leaf nodes of the lowest layer of the
tree (L and M); for all purposes, the algorithm will now consider rooms L. and M
as joined, grouping them together as their parent H. Moving up on the tree, H (the
grouping of rooms L and M) is joined via a corridor with room I and rooms J and K
ar joined via a corridor into their parent G. Further up, rooms D and E of the same
parent are joined together via a corridor, and the grouping of rooms L, M and I are
joined with the grouping of rooms J and K. Finally, the two subtrees of the root node
are joined together and the dungeon is fully connected.

to connect rooms belonging to the same parent reduces the chances of overlapping
or intersecting corridors. Moreover, non-leaf partition cells can be used to define
groups of rooms following the same theme; for instance, a section of the dungeon
may contain higher-level monsters, or monsters that are more vulnerable to magic.
Coupled with corridor connectivity based on BSP tree hierarchy, these groups of
rooms may have a single entrance from the rest of the dungeon; this allows such a
room to be decorated as a prison or as an area with dimmer light, favoring players
who excel at stealthy gameplay. Some examples of themed dungeon partitions are
shown in Figure 3.5.
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Fig. 3.5: The example dungeon from Figure 3.4, using the partitions to ‘theme’
the room contents. Partition cells B and C are only connected by a single corridor;
this allows the rooms of partition B to be locked away (green lock), requiring a key
from cell C in order to be accessed (room L). Similarly, rooms of cell B contain only
treasures and rewards, while rooms of partition C contain predominantly monsters.
Moreover, the challenge rating of monsters in cell C is split between its child nodes:
partition G contains weak goblins while cell F contains challenging monsters with
magical powers. Further enhancements could increase the challenge of cell G by
making it darker (placing fewer light sources), using different textures for the floor
and walls of cell B, or changing the shape of rooms in cell C to circular.

3.2 Agent-based dungeon growing

Agent-based approaches for dungeon generation usually amount to using a single
agent to dig tunnels and create rooms in a sequence. Contrary to the space parti-
tioning approaches of Section 3.1, an agent-based approach such as this follows a
micro approach and is more likely to create an organic and perhaps chaotic dun-
geon instead of the neatly organised dungeons of Section 3.1. The appearance of
the dungeon largely depends on the behaviour of the agent: an agent with a high de-
gree of stochasticity will result in very chaotic dungeons while an agent with some
“look-ahead” may avoid intersecting corridors or rooms. It should be noted that the
impact of the Al behaviour’s parameters on the generated dungeons’ appearance is
difficult to guess without extensive trial-and-error; as such, agent-based approaches
are much more unpredictable than space partitioning methods. Moreover, there is no
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guarantee that an agent-based approach will create a dungeon without rooms over-
lapping with each other or a dungeon which spans only a corner of the dungeon area
rather than its entirety. The following paragraphs will demonstrate two agent-based
approaches for generating dungeons.

There is an infinite amount of AI behaviours for digger agents when creating
dungeons, and they can result in vastly different results. As an example, we will first
consider a highly stochastic, ‘blind’ method. The agent is considered to start at some
point of the dungeon, and a random direction is chosen (up, down, left or right). The
agent starts digging in that direction, and every dungeon tile dug is replaced with
a ‘corridor’ tile. After making the first ‘dig’, there is a 5% chance that the agent
will change direction (choosing a new, random direction) and another 5% chance
that the agent will place a room of random size (in this example, between 3 and 7
tiles wide and long). For every tile that the agent moves in the same direction as the
previous one, the chance of changing direction increases by 5%. For every tile that
the agent moves without a room being added, the chance of adding a room increases
by 5%. When the agent changes direction, the chance of changing direction again is
reduced to 0%. When the agent adds a room, the chance of adding a room again is
reduced to 0%. Figure 3.6 shows an example run of the algorithm, and below is the
pseudo-code for running this algorithm.

initialize chance of changing direction Pc=5
initialize chance of adding room Pr=5
place the digger at a dungeon tile and randomize its direction
dig along that direction
roll a random number Nc between 0 and 100
if Nc below Pc:
randomize the agent’s direction
set Pc=0
else:
set Pc=Pc+5
:roll a random number Nr between 0 and 100
:if Nr below Pr:
randomize room width and room height between 3 and 7
place room around current agent position
set Pr=0
relse:
set Pr=Pr+5
:if the dungeon is not large enough:
18: go to step 4
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In order to avoid the lack of control of the previous stochastic approach, which
can result in overlapping rooms and dead-end corridors, the agent can be a bit more
informed about the overall appearance of the dungeon and ‘look ahead’ whether
the addition of a room would result in room-room or room-corridor intersections.
Moreover, the change of direction does not need to be rolled in every step, to avoid
winding pathways.

We will consider a less stochastic agent with ‘look ahead’ as a second example.
Like above, the agent starts at a random point in the dungeon. The agent checks
whether adding a room in the current position will cause it to intersect existing
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Fig. 3.6: A short run of the stochastic, ‘blind’ digger. The digger starts at a random
tile on the map (1st image), and starts digging downwards. After digging 5 tiles
(3rd image), the chance of adding a room is 25%, and it is rolled, resulting in the
4th image. The agent continues moving downwards (4th image) with the chance of
adding a room at 5% and the chance of changing direction at 30%: it is rolled, and
the new direction is right (6th image). After moving another 5 tiles (7th image), the
chance of adding a room is at 30% and the chance of changing direction is at 25%.
A change of direction is rolled, and the agent starts moving left (8th image). After
another tile dug (9th image), the chance of adding a room is 40% and it is rolled,
causing a new room to be added (10th image). Already from this very short run, the
agent has created a dead-end corridor and two overlapping rooms.

rooms. If all possible rooms result in intersections, the agent picks a direction and
a digging distance that will not result in the potential corridor intersecting with ex-
isting rooms or corridors. The algorithm stops if the agent stops at a location where
no room and no corridor can be added without causing intersections. Figure 3.7
shows an example run of the algorithm, and below is the pseudo-code for running
this algorithm.

1: place the digger at a dungeon tile

2: set helper variables Fr=0 and Fc=0

3: for all possible room sizes:

3: if a potential room will not intersect existing rooms:

4: place the room

5: Fr=1

6: break from for loop

7: for all possible corridors of any direction and length 3 to 7:
8: if a potential corridor will not intersect existing rooms:
9: place the corridor

10 Fc=1

11 break from for loop

12:if Fr=1 or Fc=1:

13: go to 2

It should be noted that the examples provided with the ‘blind’ and ‘look ahead’
digger agents show naive, simple approaches; Figures 3.6 and 3.7 show to a large
degree ‘worst-case scenarios’ of the algorithm being run, with resulting dungeons
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Fig. 3.7: A short run of the informed, “look ahead” digger. The digger starts at a
random tile on the map (1st image), and places a room (2nd image) and a corridor
(3rd image) since there can’t be any overlaps in the empty dungeon. After placing
the first corridor, there is no space for a room (provided rooms must be at least 3 by
3 tiles) which doesn’t overlap with the previous room, so the digger makes another
corridor going down (4th image). At this point, there is space for a small room which
doesn’t overlap (5th image) and the digger carries on placing corridors (6th image
and 8th image) and rooms (7th image and 9th image) in succession. After the 9th
image, the digger can’t add a room or a corridor that doesn’t intersect with existing
rooms and corridors, so generation is halted despite a large part of the dungeon area
being empty.

being either overlapping or prematurely terminated. While simpler or more complex
code additions to the provided digger behaviour can avert many of these problems,
the fact still remains that it is difficult to anticipate such problems without running
the agent’s algorithm on extensive trials. This may be a desirable attribute, as the
uncontrollability of the algorithm may result in organic, realistic caves (simulating
human miners trying to tunnel their way towards a gold vein) and reduce the dun-
geon’s predictability to a player, but may also result in maps that are unplayable or
unentertaining. Moreso than most approaches presented in this chapter, the digger
agent’s parameters can have a very strong impact on the playability and entertain-
ment value of the generated artefact and tweaking such parameters to best effect is
not a straightforward or easy task.

3.3 Cellular automata

A cellular automaton (plural: cellular automata) is a discrete computational model.
Cellular automata are widely studied in computer science, physics and even some
branches of biology, as models of computation, growth, development, physical phe-
nomena, etc. While cellular automata have been the subject of many publications,
the basic concepts are actually very simple and can be explained in a few paragraphs
and a picture or two.
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Fig. 3.8: Two types of neighbourhoods for cellular automata. Adapted from
wikipedia

A cellular automaton consists of an n-dimensional grid, a set of states and a set
of transition rule. Most cellular automata are either 1-dimensional (vectors) or 2-
dimensional (matrices). Each cell can be in one of several states; in the simplest
case, cells can be on or off. The distribution of cell states at the beginning of an
experiment (at time #p) is the initial state of the cellular automaton. From then on, the
automaton evolves in discrete steps based on the rules of that particular automaton.
At each time ¢, each cell decides its new state based on the state of itself and all of
the cells in its neighbourhood at time t — 1.

The neighbourhood defines which cells around a particular cell ¢ affects ¢’s future
state. For one-dimensional cellular automata, the neighbourhood is defined by its
size, i.e. how many cells to the left or right the neighbourhood stretches. For two-
dimensional automata, the two most common types of neighbourhoods are Moore
neighbourhoods and von Neumann neighbourhoods. Both neighbourhoods can have
a size of any whole number, one or greater. A Moore neighbourhood is a square: a
Moore neighbourhood of size 1 consists of the eight cells immediately surrounding
¢, including those surrounding it diagonally. A von Neumann neighbourhood is like
a cross centred on c: a von Neumann neighbourhood of size 1 consists of the four
cells surrounding c above, below, to the left and to the right (see Figure 3.8).

The number of possible configurations of the neighbourhood equals the num-
ber of states for a cell to the power of the number of cells in the neighbourhood.
These numbers can quickly become huge, for example a two-state automaton with
a Moore neighbourhood of size two has 2%° = 33554432 configurations. For small
neighbourhoods, it is common to define the transition rules as a table, where each
possible configuration of the neighbourhood is associated with one future state, but
for large neighbourhoods the transition rules are usually based on the proportion of
cells that are in each state.
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Cellular automata are very versatile, and several types have been shown to be
Turing complete. It has even been argued that they could form the basis for a new
way of understanding nature through bottom-up modelling [35]. However, in this
chapter we will mostly concern ourselves with how they can be used for procedural
content generation.

In a paper from 2010, Johnson et al. describe a system for generating infinite
cave-like dungeons using cellular automata [7]. The motivation was to create an
infinite cave crawling game, with environments stretching out endlessly and seam-
lessly in every direction. An additional design constraint is that the caves are sup-
posed to look organic or eroded, rather than having straight edges and angles. No
storage medium is large enough to store a truly endless cave, so the content must
be generated at runtime, as players choose to explore new areas. The game does not
scroll but instead presents the environment one screen at a time, which offers a time
window of a few hundred milliseconds to create a new room every time the player
exits a room.

This method uses the following four parameters to control the map generation
process:

e A percentage of rock cells (inaccessible area);

e The number of cellular automata generations;

e A neighbourhood threshold value that defines a rock (7=5);
e The number of neighbourhood cells.

Each room is a 50x50 grid, where each cell can be in one of two states: empty or
rock. Initially, the grid is empty. The generation of a single room works as follows.

e The grid is “sprinkled” with rocks: for each cell, there is probability r (e.g. 0.5)
that it is turned into rock. This results in a relatively uniform distribution of rock
cells.

e A cellular automaton is applied to the grid for n (e.g. 2) steps. The single rule of
this cellular automaton is that a cell turns into rock in the next time step if at least
T (e.g. 5) of its neighbours are rock, otherwise it will turn into free space.

e For aesthetic reasons the rock cells that border on empty space are designated as
“wall” cells, which are functionally rock cells but look different.

This simple procedure generates a surprisingly lifelike cave-room. Figure 3.9
shows a comparison between a random map (sprinkled with rocks) and the results
of a few iterations of the cellular automaton.

But while this generates a single room, the game requires a number of connected
rooms. A generated room might not have any openings in the confining rocks at all,
and there is certainly no guarantee that any exits align with entrances to the adjacent
rooms at all. Therefore, whenever a room is generated, its immediate neighbours
are also generated. If there is no connection between the largest empty spaces in the
two rooms, a tunnel is drilled between those areas at the point where they are least
separated. Two more iterations of the cellular automaton are then run on all nine
neighbouring rooms together, to smooth out any sharp edges. Figure 3.10 shows
the result of this process, in the form of nine rooms that seamlessly connect. This
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(a) Random map (b) CA map

Fig. 3.9: Cave generation: Comparison between a CA and a randomly generated
map (» = 0.5 in both maps); CA parameters: n =4, M = 1, T = 5. Rock and wall
cells are represented by red and white colour respectively. Coloured areas represent
different tunnels (floor clusters). Adapted from [7]

generation process is extremely fast, and can generate all nine rooms in less than a

millisecond on a modern computer.
. i

Fig. 3.10: Cave generation: a 3 x 3 base grid map generated with CA. Rock and
wall cells are represented by red and white colour respectively. Grey areas represent
floor. (M =2;T = 13;n = 4;r = 50%). Adapted from [7]

We can conclude that the small number of parameters, and the fact that they are
relatively intuitive, is an asset of cellular automata approaches like Johnson et al.’s.
However, this is also one of the downsides of the method: for both designers and
programmers, it is not easy to fully understand the impact that a single parameter
has on the generation process, since each parameter affects multiple features of the
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generated maps. It is not possible to create a map that has specific requirements, like
a given number of rooms with a certain connectivity. Therefore, gameplay features
are somewhat disjoint from these control parameters. Any link between this gener-
ation method and gameplay features would have to be carried out through a process
of trial and error.

3.4 Grammar-based dungeon generation

Generative grammars were originally developed to formally describe structures in
natural language. These structures—phrases, sentences, etc.—are modeled by a fi-
nite set of recursive rules that describe how larger-scale structures are built from
smaller-scale ones, grounding out in individual words as the terminal symbols. They
are generative because they describe linguistic structures in a way that also describes
how to generate them: we can sample from a generative grammar to produce new
sentences featuring the structures it describes. Similar techniques can be applied to
other domains. For example, graph grammars [20] model the structure of graphs
using a similar set of recursive rules, with individual graph nodes as the terminal
symbols.

Back to our topic of dungeon generation, Adams [1] uses graph grammars to gen-
erate first-person shooter (FPS) levels. FPS levels may not obviously be the same as
dungeons, but for our purposes his levels qualify as dungeons, because they share the
same structure, a maze of interconnected rooms. He uses the rules of a graph gram-
mar to generate a graph that describes a level’s topology: nodes represent rooms,
and an edge between two rooms means that they are adjacent. The method doesn’t
itself generate any further geometric details, such as room sizes. An advantage of
this high-level, topological representation of a level is that graph generation can
be controlled through parameters such as difficulty, fun, and global size. A search
algorithm looks for levels that match input parameters by analyzing all results of
a production rule at a given moment, and selecting the rule that best matches the
specified targets.

One limit of Adams’ work is the ad-hoc and hard-coded nature of its grammar
rules, and especially the parameters. It is a sound approach for generating the topo-
logical description of a dungeon, but generalizing it to a broader set of games and
goals would require creating new input parameters and rules each time. Regardless,
Adams’ results showcase the motivation and importance of controlling dungeon
generation through gameplay.

Dormans’ work [6] is more extensively covered in Chapter 5, so we will only
briefly refer here to his use of generative grammars to generate dungeon spaces for
adventure games. Through a graph grammar, missions are first generated in the form
of a directed graph, as a model of the sequential tasks that a player needs to perform.
Subsequently, each mission is abstracted to a network of nodes and edges, which is
then used by a shape grammar to generate a corresponding game space.
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This was the first method to succesfully introduce gameplay-based control, most
notably with the concept of a mission grammar. Still, the method does not offer
real control parameters, since control is actually exerted by the different rules in the
graph and shape grammars, which are far from intuitive for most designers.

Explicitly inspired by the work of Dormans, van der Linden et al. [12] recently
proposed the use of gameplay grammars to generate dungeon levels. Game design-
ers specify, a priori, design constraints expressed in a gameplay-oriented vocabu-
lary, consisting of player actions to perform in-game, their sequencing and composi-
tion, inter-relationships and associated content. These designer-authored constraints
directly result in a generative graph grammar, a so-called gameplay grammar, and
multiple grammars can be expressed through different sets of constraints. A gram-
mar generates graphs of player actions, which subsequently determine layouts for
dungeon levels. For each generated graph, specific content is synthesized by fol-
lowing the graph’s constraints. Several proposed algorithms map the graph into the
required game space and a second procedural method generates geometry for the
rooms and hallways, as required by the graph.

This approach aims at improving gameplay-based control on a generic basis, as
it provides designers with the tools to effectively create, from scratch, grammar-
based generators of graphs of player actions. The approach is generic, in the sense
that such tools are not connected to any domain, and player actions and related de-
sign constraints can be created and manipulated across different games. However,
integration of graphs of player actions in an actual game requires a specialized gen-
erator, able to transform such a graph into a specific dungeon level for that game.
van der Linden et al. demonstrated such a specialized generator for only one case
study, yielding fully-playable 3D dungeon levels for the game Dwarf Quest [34].
Figure 3.11 show (a) a gameplay graph and (b) a dungeon generated from this
method.

As for gameplay-based control, this approach empowers designers to specify and
control dungeon generation with a more natural design-oriented vocabulary. Design-
ers can create their own player actions and use them as the vocabulary to control and
author the dungeon generator. For this, they specify the desired gameplay which
then constrains game-space creation. Furthermore, designers can express their own
parameters (e.g. difficulty) which control rule rewriting in the gameplay grammar.
Setting such gameplay-based parameters allows for an even more fine-grained con-
trol over generated dungeons.

3.5 Advanced platform generation methods

In this section, we turn our attention to platform generation methods, by discussing
two recent methods that were originally proposed for generating platform levels.
Unlike the previous sections, there is no single category or family to characterize
these methods. Interestingly, as we will point out, the central concepts of each of
them could very well contribute to improve the generation of dungeons as well.
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Fig. 3.11: (a) A gameplay graph created by van der Linden ef al. [11] and (b) a
corresponding dungeon layout generated for it.

The first method, proposed by Smith et al. [30], is rhythm-base platform gener-
ation. It proposes level generation based on the notion of rhythm, linked to the tim-
ing and repetition of user actions. They first generate small pieces of a level, called
rhythm groups, using a two-layered grammar-based approach. In the first layer, a
set of player actions is created, after which this set of actions is converted into cor-
responding geometry. Many levels are created by connecting rhythm groups, and a
set of implemented critics selects the best level.

Smith et al. propose a set of ‘knobs’ that a designer can manipulate to control the
generation process, including (i) a general path through the level (i.e. start, end, and
intermediate line segments), (ii) the kinds of rhythms to be generated, (iii) the types
and frequencies of geometry components, and (iv) the way collectables (coins) are
divided over the level (e.g. coins per group, probability for coins above gaps, etc.).
There are also some parameters per created rhythm group, such as the frequency of
jumps per thythm group, and how often specific geometry (springs) should occur for
a jump. Anorher set of parameters provides control over the rhythm length, density,
beat type, and beat pattern.

Overall, the large amount of parameters at different levels of abstraction provides
many control options, and allows for the versatile generation of very disparate levels.
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Furthermore, they relate quite seamlessly to gameplay, specially in the platformer
genre. However, this approach could nicely tie in with dungeon generation as well.
As with Dormans, a two-layered grammar is used, where the first layer considers
gameplay (in this case, player actions) and the second game space (geometry). The
notion of ‘rhythm’ as defined by Smith ez al. is not exactly applicable to dungeons,
but the pacing or tempo of going through rooms and hallways could be of similar
value in dungeon-based games. The decomposition of a level into thythm groups
also connects very well with the possible division of a dungeon into dungeon-groups
with distinct gameplay features, e.g. pacing.

Our second method, proposed by Mawhorter ef al. [16] is called Occupancy-
Regulated Extension (ORE), and it directly aims at procedurally generating 2D
platform levels. ORE is a general geometry assembly algorithm that supports
human-design-based level authoring at arbitrary scales. This approach relies on pre-
authored ‘chunks’ of level as a basis, and then assembles a level using these chunks
from a library. A chunk is referred to as level geometry, such as a single ground
element, a combination of ground elements and objects, interact-able objects, etc.
This differs from the rhythm groups introduced by Smith et al. [30], because rhythm
groups are separately generated by a PCG method whilst the ORE chunks are pieces
of manually-created content in a library. The algorithm takes the following steps: (i)
a random potential player location (occupancy) is chosen to position a chunk; (ii)
a chunk needs to be selected from a list of context-based compatible chunks; (iii)
the new chunk is integrated with the existing geometry. This process continues until
there are no potential player locations left, after which post-processing takes care of
placing objects such as power-ups.

This framework is meant for general 2D platform games, so specific game ele-
ments and mechanics need to be filled in, and chunks need to be designed and added
to a library. Versatile levels can only be generated given that a minimally interesting
chunk library is used.

Mawhorter et al. do not mention specific control parameters for their ORE al-
gorithm, but a designer still has some control. Firstly, the chunks in the library and
their probability of occurrence are implicit parameters, i.e. they actually determine
the level geometry and versatility, and possible player actions need to be defined and
incorporated in the design of chunks. And above all, their mixed-initiative approach
provides the largest amount of control one can offer, even from a gameplay-based
perspective. However, taken too far, this approach could come too close to manu-
ally constructing a level, decreasing the benefits of PCG. In summary, much control
can be provided by this method, but the generation process may still be not very
efficient, as a lot of manual work seems to still be required for specific levels to be
generated.

This ORE method proposes a mixed-initiative approach, where a designer has
the option to place content before the algorithm takes over and generates the rest of
the level. This approach seems very interesting also for dungeon generation, where
an algorithm that can fill in partially designed levels would be of great value. Imag-
ine a designer placing special event rooms and then have an algorithm add the other
parts of the level that are more generic in nature. This mixed-initiative approach
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Fig. 3.12: Snapshot from Spelunky [4].

would increase both level versatility, and control for designers, while still taking
work out of their hands. Additionally, it would fit to the principles of dungeon de-
sign, where special rooms are connected via more generic hallways. Also, using a
chunk library fits well in the context of dungeon-level generation (e.g. combining
sets of template rooms, junctions and hallways). However, 3D dungeon levels would
typically require a much larger and more complex chunk library than 2D platform
levels, which share a lot of similar ground geometry.

3.6 Example applications to platform generation

3.6.1 Spelunky

Spelunky is a 2D platform indie game originally created by Derek Yu in 2008 [4].
The PC version of the game is available for free. An update version of the game
was later released in 2012 for the Xbox Live Arcade with better graphics and more
content. An enhanced edition was also released on PC in 2013. The gameplay in
Spelunky consists of traversing the 2D levels, collecting items, killing enemies and
finding your way to the end. To win the game, the player needs to have good skills
in managing different types of resources such as ropes, bumps and money. Losing
the game at any level requires restarting the game from the beginning.

The game consists of four groups of maps of increasing level of difficulty. Each
set of levels has a distinguished layout and introduces new challenges and new types
of enemies. An example level from the second set is presented in Figure 3.12.

The standout feature of Spelunky is the procedural generation of game content.
The use of PCG allowed the generation of endless variations of content that are
unique in every playthrough.
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Fig. 3.13: Level generation in Spelunky. Adapted from [15]

Fig. 3.14: An example design of a room in Spelunky. Adapted from [15]

Each level in Spelunky is divided into a 4 x 4 grid of 16 rooms with two rooms
marking the start and the end of the level (see Figure 3.13) and corridors connecting
adjacent rooms. Not all the rooms are necessarily connected; in Figure 3.13 there are
some isolated rooms such as the ones at the top left and down left corners. In order
to reach these rooms, the player needs to use bombs, which are a limited resource,
to destroy the walls.

The layout of each room is selected from a set of predefined templates. An ex-
ample template for one of the rooms presented in Figure 3.13 can be seen in Fig-
ure 3.14. In each template, a number of chunks are marked in which randomisation
can occur. Whenever a level is being generated, these chunks are replaced by dif-
ferent types of obstacle according to a set of randomised number generators [15].
Following this method, a new variation of the level can be generated with each run
of the algorithm.

More specifically, each room in Spelunky consists of 80 tiles arranged in a 8 x 10
metrics [3]. An example room template can be:

0000000011
0060000L11
0000000L11
0000000L11
0000000L11
0000000011
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0000000011
1111111111

Where O represents an empty cell, 1 stands for walls or bricks, L for ladders. The
6 in this example can be replaced by random obstacles permitting the generation
of different variations. The obstacles, or traps, are usually of 5 x 3 blocks of tiles
that overwrite the original tiles. Examples traps included in the game can be spikes,
webs or arrow traps, to name some.

While the basic layout of the level is partially random, with the presence of op-
portunities for variations, the placement of monsters and traps is 100% random.
After generating the physical layout, the level map is scanned for potential places
where monsters can be generated. These include for example, a brick with empty
tiles behind that offer enough space for generating a spider. There are another set
of random numbers that control the generation of monsters. These numbers control
the type and the frequency of the generation. For example, there is a 20% chance
of creating a giant spider and once a spider is generated, this probability is set to 0
preventing the existence of more than one giant spider in a level.

In this sense, level generation in Spelunky can be seen as a composition of three
main phases: in the first phase, the main layout of the level is generated by choosing
the rooms from the templates available and defining the entrance and exit points.
The second phase is obstacle generation which can be thought of as an agent go-
ing through the level and placing obstacles in predefined spaces according to a set
of heuristics. The final phase is the monsters generation phase where another agent
search the level and place a monster when proper space is found and a set of condi-
tions is satisfied.

3.6.2 Infinite Mario Bros

Super Mario Bros is a very popular 2D platform game developed by Nintendo and
released in the mid eighties [17]. A public domain clone of the game, named Infinite
Mario Bros. (IMB) [19] was later published by Markus Persson. IMB features the
art assets and general game mechanics of Super Mario Bros. but differs in level
construction. Infinite Mario Bros is playable on the web, where the Java source
code is also available'. While implementing most features of Super Mario Bros, the
standout feature of Infinite Mario Bros is the automatic generation of levels. Every
time a new game is started, levels are randomly generated by traversing the level
map and adding features according to certain heuristics.

The internal representation of the levels in Infinite Mario Bros is a two-dimensional
array of game elements. In “small” state, Mario is one block wide and one block
high. Each position in the array can be filled with a brick block, a coin, an en-
emy or nothing. The levels are generated by placing the game elements in the two-
dimensional level map.

! http://www.mojang.com/notch/mario/
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Different approaches can be followed to generate the levels for this game [27, 25,
21, 31]. In the following we describe one possible approach.

The Probabilistic Multi-pass Generator (PMPG) was created by Ben Weber [27]
as an entry for the level generation track of the Mario Al Championship [22]. The
generator is an agent-based and works by first creating the base level and then per-
forming a number of passes through it. Level generation consists of six passes from
left to right and adding one of the different types of game elements. Each pass is
associated with a number of events (14 in total) that may occur according to prede-
fined uniform probability distributions. These distributions are manually weighted
and by tweaking these weights one can gain control over the frequency of different
elements such as gaps, hills and enemies.

The six passes considered are:

1. An initial pass that changes the basic structure of the level by changing the hight
of the ground and starting or ending a gap;

2. the second pass adds the hills in the background;

3. the third pass adds the static enemies such as pipes and cannons based on the
basic platform generated;

4. moving enemies such as koopas and goombas are added in the fourth pass;

. the fifth pass adds the unconnected horizontal blocks, and finally,

6. the sixth pass places coins throughout the level.

W

Playability, or the existence of a path from the starting to the ending point, is
guaranteed by imposing constraints of the different items created or places. For
example, the width of generated gaps is limited by the maximum number of blocks
that the player can jump over and the hight of pipes is limited to ensure that the
player can pass through.

3.7 Lab session: Level generator for InfiTux (and Infinite Mario)

InfiTux, short for Infinite Tux, is a 2D platform game built by combining the under-
lying software used to generate the levels for Infinite Mario Bros (IMB) with the art
and sound assets of Super Tux [33]. The game was created to replace IMB which
is the platform extensively used in research [18, 28, 32, 9, 2] and the software for
the Mario Al Championship [26, 24, 8]. Since the level generator for InfiTux is the
same as the one used for IMB, the game features infinite variations of levels by the
use of a random seed. The level of difficulty can also be tuned using different dif-
ficulty values which control the number, frequency and types of the obstacles and
monsters.

The purpose of this exercise is to use one or more of the methods presented in
this chapter to implement your own generator that creates content for the game. The
software you will be using is the one used for the Level Generation Track of the
Platformer AI Competition [23]; a successor to the Mario Al Championship that is
based on InfiTux. The software provides an interface that eases the interaction with
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the system and is a good starting point. You can either modify the original level
generator, or use it as an inspiration. In order to help you to start with the software,
we will in the following describe the main components of the interface provided and
how it can be used.

As the software is developed for the Level Generation track of the competition,
which invites participants to submit level generator that are fun for specific play-
ers, the interface incorporates information about player behaviour that you could
use while building your generator. This information is collected while the player is
playing a test level and stored in a gameplay metrics that contains statistical features
extracted from a gameplay session. The features include, for example, the number
of jumps, the time spent running, the number of items collected and the number of
enemies killed.

For your generator to work properly, your level should implement the Levellnter-
face which specifies how the level is constructed and how different types of elements
are scattered around the level:

public byte[][] getMap();
public SpriteTemplate[][] getSpriteTemplates ()

The size of the level map is 320 x 15 and you should implement a method of
your choice to fill in the map. Note that the basic structure of the level is saved in a
different map than the one used to store the placement of enemies.

The level generator, which passes the gameplay metrics to your level and com-
municates with the simulator, should implement the LevelGenerator interface:

public LevellInterface generatelevel (GamePlay playerMet);

There are quite a few examples reported in the literature that use this software
for content creation, some of them are part of the Mario AI Championship and their
implementation is open source and freely available at the competition website [22].

3.8 Summary
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