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Abstract—AI is the workhorse of modern data analytics and omnipresent
across many sectors. Large Language Models and multi-modal foundation models
are today capable of generating code, charts, visualizations, etc. How will these
massive developments of AI in data analytics shape future data visualizations and
visual analytics workflows? What is the potential of AI to reshape methodology and
design of future visual analytics applications? What will be our role as visualization
researchers in the future? What are opportunities, open challenges and threats in
the context of an increasingly powerful AI? This Visualization Viewpoint discusses
these questions in the special context of biomedical data analytics as an example
of a domain in which critical decisions are taken based on complex and sensitive
data, with high requirements on transparency, efficiency, and reliability. We map
recent trends and developments in AI on the elements of interactive visualization
and visual analytics workflows and highlight the potential of AI to transform
biomedical visualization as a research field. Given that agency and responsibility
have to remain with human experts, we argue that it is helpful to keep the focus
on human-centered workflows, and to use visual analytics as a tool for integrating
“AI-in-the-loop”. This is in contrast to the more traditional term “human-in-the-loop”,
which focuses on incorporating human expertise into AI-based systems.

V isual Analytics has demonstrated its utility in
the creation of artifacts that help to solve real-
world problems. In the area of public health

and clinical medicine, for example, visualization and
visual analytics are currently prevalent techniques for
knowledge discovery and treatment planning. How-
ever, its potential has not been fully harnessed. AI,
and more specifically deep learning (DL) techniques,
already play a role in the development of Visual An-
alytics tools for biomedical data. For example, in the
data acquisition and processing stages, DL techniques
are crucial to several tasks, such as noise removal,
segmentation, etc. But the seamless integration of AI
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techniques in VA tools has still a long path ahead [1].
Concurrently, AI technology is evolving at an extremely
fast pace. The development of transformer-based ar-
chitectures and along with this, large foundation and
language models (LLMs) like chatGPT [2] and their
evolution towards multi-modal models has revolution-
ized our understanding of what can be achieved with
deep learning. More recently, this has evolved into a
discussion about the future development of Artificial
General Intelligence (AGI). Morris et al. [3] categorized
recently the current status and potential developments
of AGI into "narrow" (i.e. specialist) and "general"
AI, and each category into five levels from emerg-
ing (comparable to unskilled humans) to superhuman
(outperforming all humans). While narrow AI can al-
ready achieve superhuman performance to date like
AlphaFold3 [4], AGI is still at emerging technology level
that cannot yet compete with human performance.
While there is no guarantee that superhuman AGI will
be achieved, it is reasonable to anticipate further devel-
opments towards lower levels of AGI with high potential
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to result in transformative shifts in the way we interact
with machines, as users, as well as researchers and
developers [3].

Taking such developments and trends in AI re-
search as a technological base line, Visual Analytics is
facing a radical transformation as a field of research.
While for Visual Analytics, the human-in-the-loop “has
to be the ultimate authority in giving the direction of
the analysis along his or her specific task” [5], in
machine learning, the concept of human-in-the-loop
commonly refers to the least automated and thus
least sophisticated and least desirable solution [3].
We are convinced that AI will become an integrated
part of the Visual Analytics loop beyond its core an-
alytics functionality, helping to ultimately design and
implement individualized, adaptive human- and task-
centered Visual Analytics solutions for complex data
on demand where deep learning-based, and more
specifically, generative, analytical and predictive sys-
tems collaborate with humans.

This Visualization Viewpoint presents our ideas of
how deep learning techniques may influence and play
a role in the creation and use of Visual Analytics
pipelines in the future. We reflect on the current and
possible future contributions and implications of in-
corporating AI into (1) the VA tool creation pipeline
and (2) the user interaction with AI empowered VA
tools, that is, putting AI-in-the-loop from VA solution
development up to an analytical task performed by an
end user using these tools. To this end, we rethink
the VA tool construction pipeline to add tasks that we
envision will be feasible to develop cooperatively with
AI technologies, such as LLMs. In addition, we depict
our vision of what the role of Assistive AI in context of
Visual Analytics for end users should be in the future,
and how AI will shape our work as Visual Analytics
researchers.

Inspired by previous discussion in context of the
Dagstuhl-Seminar 23451 "Visualization of Biomedical
Data – Shaping the Future and Building Bridges on
Biomedical Data", our discussion in this Visualization
Viewpoint will not primarily focus on standard data
analytics cases. Instead, it is driven by real-world,
non-trivial requirements defined through data and task
complexity as present in the biomedical domain.

Visual Analytics Workflows: present
and future

Current VA status
We focus on the potential effects of AI, and particularly,
DL and generative systems in the workflow of the

development of Visual Analytics tools. The different
steps of such workflows are depicted in Figure 1. They
include the data acquisition and processing, together
with the elements that transform such data into visual
analytics tools. Overly simplified, these consist of the
creation of the different visualization components, the
configuration of such components, and the creation of
the final Visual Analytics interactive tool.

From those steps, only the first one, data acquisi-
tion and processing, has already been established as
a stage where Machine Learning (ML) and DL tech-
niques play a crucial role. Tasks such as noise removal,
image segmentation, feature extraction, to name a few,
are commonly designed with the help of these tools
including related methods to enhance transparency
and explainability of machine made decisions to end
users. The remaining components of the pipeline are
also undergoing alterations under the influence of AI,
although these are still largely superficial in nature.
Currently, the emergence of LLMs is changing com-
pletely the way we develop software. As a result, we
envision a future VA tool development pipeline that
will be enhanced by generative AI. Those technologies
will assist the visualization developer in many of such
steps. Not only the design and development will be
carried out in collaboration with AI tools, but it will
also influence the way how users will interact with
these tools, for example, by enabling natural language
commands or supporting analytical workflows through
intent predictions.

The future of VA workflows
While the idea of automating the creation of visu-
alizations is not new, most previous systems were
constrained to rigid rules, and had limited capabilities.
Only recently, with the advent of more advanced nat-
ural language technologies and generative models, a
greater flexibility has been gained, and this creation
process is getting closer to a conversational and intu-
itive procedure where an AI assistant helps in gener-
ating code and solving problems and doubts. On the
other hand, there are plenty of examples of language-
powered queries to extract information from data. What
is new in this area, is the extraction of higher level
insights, opposed to concrete queries (e.g., what is the
maximum value of a certain variable) directly from the
data or the visualization itself. Therefore, tasks such
as storytelling, or labelling visualizations are becoming
feasible. Our vision is illustrated in Figure 2.

We classify the contribution of AI into three different
categories, that differ a lot in their nature, but that can
be supported in different manners by AI and generative
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FIGURE 1. Classical Visual Analytics workflow. To create VA tool, first data is acquired and processed. Then, the visualization
components, which are dependent on the task, are created, and used to configure the final Visual Analytics tool.
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FIGURE 2. AI-enhanced Visual Analytics workflow construction: In this scheme, we depict different stages of the creation of a
VA tool that could be enhanced through the use of novel deep-learning technologies. Gray arrows correspond to the classical
VA pipeline (Figure 1), blue arrows indicate new AI-supported data processing steps, orange arrows indicate new AI-supported
steps in the tool creation pipeline (note: most of the orange arrows are on the top part of the figure, flowing from data to user,
but one path on the bottom is based on tasks/user intent and thus flows from the user backwards). Finally, green arrows indicate
AI-augmented interactions during tool usage and thus replace the classical interaction arrow from Figure 1.

systems, as shown in Figure 2: (1) data acquisition
and processing, (2) components that can aid in the
VA tool creation , and (3) the components devoted to
assisting interaction with such a tool.

The first category includes a set of well-known and
established ML methods that are continuously devel-
oping to tackle new datasets modalities and increased
accuracy. We call those tasks Data2Data .

Regarding VA tool creation, tasks include:

• Data2Code : Generation of code for visualiza-
tion components.

• Data2Image : Extraction of visual depictions
from the data.

• Data2Viscomponent : Besides individual charts
or images, other elements such as filters,
menus, etc., need to be defined to create a
VA tool. These basic components could also be
created by generative models, since they do not
differ much from other code required to build
charts.

• Task2VisConfig : All the components in a VA
tool require configuration. These include chang-
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ing size, colors, palettes, etc.
• Viscomponent2Tool : The creation of a VA tool

involves linking many visualization components,
and laying them out in a dashboard.

All tool creation tasks have in common that they are not
mere transformations of input data. On the contrary,
they require generative capabilities. Even though some
applications such as Lida [6] can already generate
pieces of code to visualize simple datasets, they are
restricted to very basic charts. Thus, they do not
generalize to the complex input medical or biological
pipelines require. As LLMs evolve and specialize, direct
generation of custom visualization code adapted to the
current dataset will be feasible. These code snippets
rely on the use of visualization libraries to handle the
final visualization.

Data2Image is a more sophisticated version of

Data2Code . In this case, the AI component will be
able to transform data directly into an image. When
transforming data into visualization code, no care is
taken on the final aspect of the visualization. The
configuration of the visual variables is commonly left
to the library itself, which often has default parameters
that work for a wide range of situations. Selection and
fine-tuning of the aesthetics of the final visualization is
a task that is currently only done by humans, but could
be taken over by large complex systems if enough data
(and maybe guidelines) to train them were available.

Each visualization component needs to be adapted
to the VA tool: from modifying its size to changing
palettes, many aspects can be fine-tuned. Currently,
this is carried out by the designers, but, like in previous
cases, in the future they may end up being tasks that
can be triggered by the designers, and performed by
AI-supported tools.

Like in the previous case, we believe that the pro-
cess of creating a tool by mixing and linking different
visualization components ( Viscomponent2Tool ) will
be achievable in the near future with the support of
generative systems.

Concerning interaction, we anticipate that the
pipeline will benefit from the advances in Natural Lan-
guage Processing, notably LLMs. Furthermore, they
will also integrate other DL techniques to include both
more classical tasks, such as querying directly the
data, and more high-level procedures such as AI guid-
ance for the interaction with the visualizations using
natural language. These tasks consist of:

• Task2Query : Execution of queries about data
(e.g., find values) or visualization insights (e.g.,
determine insights, correlations, etc.) using nat-
ural language. Here, AI techniques will improve

the understanding of complex queries or user
intentions. But they will also be able to propose
or modify queries to help users interpret the
data, since they will be able to obtain a more
profound understanding of the input dataset.

• Task2Interact : Interaction with the tool using
natural language, such as for filtering, selection,
or getting values. Again, AI can help either by
facilitating the interaction (e.g., predicting the
users’ movements) or by hinting at potential
tasks of interest.

Natural language has already been demonstrated
for simple interactions with data, such as finding val-
ues. More elaborate interactions are feasible with so-
phisticated language models that can translate ques-
tions into the creation of filters, aggregations, or data
extraction tasks. However, more complex data, with
multiple dimensions, or where queries require un-
derstanding of high-level structures (e.g., anatomy)
or features (e.g., a visual cue), have still not been
showcased in the literature. In the future, this task,
Task2Query , can be further assisted by generative

models if these improve their analysis capabilities and
can point to relevant features or regions of interest.
This might eventually include storytelling, analysis of
temporal data evolution, extraction of relevant insights
for a certain task, etc.

Task2Interact is concerned with direct manipula-
tion of complex datasets. This can be time-consuming
and cumbersome for complex scenarios. AI might
guide the interaction both by identifying regions of
interest, or by creating filters that involve multiple vari-
ables and thresholds, for example. But also anticipat-
ing users’ intentions, or completing their actions. This
would reduce the time necessary for data exploration,
as well as guarantee that relevant facts are detected.

The different parts of the pipeline can be mixed
and matched to create various levels of automation
(see Figure 3). On the one end we have a fully
human-generated and operated system as is common
today. Components are manually implemented, com-
bined and configured for the task at hand. On the other
end of the spectrum a complete VA system could be
generated as an end-to-end AI solution, based on a
prompt, specifying data and intent only. In between
are combinations of human- and AI-generated compo-
nents and configurations. As discussed above, we al-
ready see early versions of AI-supported components
(e.g., creating code for a view, using an LLM) config-
ured by humans, or AI-generated configurations (e.g.,
through interaction with natural language). However,
generating deeply integrated tools with a high level
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AI-gen configuration

(Task2Config+Component2Tool)

AI-sup* components
(Data2Component)
AI-gen configuration

(Task2Config+Component2Tool)
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(Data2Image+Task2Conf+Comp2Tool)

AI-sup* components
(Data2Component)

human-gen configuration
end-to-end AI solution

(Data+Task2Tool)

“create a VA tool to explore various correlations in dataset X”
“create a view to showing correlation between A and B in dataset X”

Task2Interact / Task2Interact + Task2Query  require regeneration/Task2Interact/Task2Query can (re-)configure

FIGURE 3. Spectrum of AI in the VA tool generation process. AI-sup* indicates AI supported tasks, such as creating code
fragments, that also means that the output is a configurable component that can be directly edited, configured, and interacted
with, by a human user. AI-gen(erated) indicates a closed AI solution, that cannot be modified. Note: positions indicate only the
order or increasing automation but do not quantify their differences. For example, AI-gen components+configuration is very close
to end-to-end, with the difference that it is created step-wise and parts can be modified which is not possible for an end-to-end
solution.

of flexibility is still far off. Of note, interaction can be
added manually or AI-supported in any configuration,
however, the closer we get to end-to-end solutions,
the more regeneration might be required, posing chal-
lenges for continuity. Consider an intent-driven interac-
tion for a volume view: “Make soft-tissue transparent.”
If the transfer function is created as a configurable
component of the view, the human operator or AI can
directly manipulate the transfer function based on such
a prompt and the resulting visualization will adapt. In
an end-to-end volume view the transfer function might
be a purely abstract concept and changing it requires
a complete regeneration of the visualization.

Ensuring the integrity, explainability and trans-
parency of AI-generated VA workflows, including all
their components, is crucial, but will remain a ma-
jor challenge in the coming years, both from an AI
methodology and from an AI-user communication point
of view. Even the most advanced LLMs still hallucinate
and fail to provide trustworthy and faithful explanations
and reasoning for generated solutions to complex tasks
(see [7] and the controversies surrounding this paper).
It is currently an open question how end users or devel-
opers can efficiently ensure, that the created tools will
work correctly emphasizing the ongoing importance
of XAI research. Rather than waiting for the remote
hope that some future AGI might be able to reason
correctly about every decision it makes, we believe

that the visual analytics community should realize its
immediate potential to making existing systems more
explainable.

Challenges in Biomedical Data
Analytics

Independent from any Visual Analytics applications,
deep learning is already an established method in
biomedical informatics. Applications range from small
sub-tasks like image registration, data filtering or data
classification tasks up to powerful models providing
for example medical doctors with end-to-end diagnos-
tics or life scientists with fully automated pipelines
for protein discovery [4]. But even if the visions of
a super-human generalist AI like described by Mor-
ris et al. [3] or generalist medical AI by Moor et
al. [8] seem to indicate at first sight that interactive
data exploration and analytics with Visual Analytics is
becoming obsolete and data-driven decision-making
might be fully automatized in its extreme case, this
can be questioned due to several reasons. (1) Data
in the biomedical field are highly dynamic as
data acquisition is, especially in the life sciences,
undergoing constant technical evolution and inno-
vation. Novel imaging technologies are for instance
developed not only in terms of increased scales, imag-
ing quality and speed, but also e.g., in terms of novel
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markers highlighting specific biological function at the
molecular level or technology capturing transcriptomics
and metabolomics in spatial samples. This dynamic
is making data analytics very demanding, as com-
pletely novel types of before potentially impossible
observations exhibiting novel features would have to
be handled reliably by an AGI (or lower-level existing
AI solutions). (2) Data in the biomedical field often
lacks standardization, missing or uncertain data is
common. Thus, automated processing based on orig-
inal raw data becomes challenging, requiring expert
and potentially also insider knowledge not previously
exposed to any AGI. (3) Data complexity and di-
mensionality is constantly increasing and together
with it the complexity of questions to the data
and related analytical tasks. Beyond standardized
diagnostic tasks, this is a highly dynamic field driven
by the dynamics in data acquisition technologies (see
(1)) and (4) Entirely new situations may arise where
we are confronted with unprecedented data, such
as during the Covid 19 pandemic.

Coping with these challenges autonomously re-
quires a broad set of highly specialized “emerging”1

skills that will hardly be reached by any AGI in the
near future. Furthermore, by definition the idea of a
generalist AI pushes humans into a more passive role
in which the AI delivers the results, which the human
finally only approves or rejects. Such an end-to-end
scenario could easily fail in complex data environments
as described above, in which the learnt skills of an
AGI are not necessarily sufficient to arrive at reliable
results. It also contradicts the concept of human cen-
tered AI being a central element of current ethical and
regulatory frameworks (see section below).

The combination of AI-driven data analysis with
visual analytics as an interface between the user and
the AI establishes a different concept of cooperation
between humans and AI. It comes with the oppor-
tunity to create an environment that can react more
flexibly to dynamic, complex data environments and
tasks and supports users in drawing their data-based
conclusions as discussed above, by bringing the AI-
in-the-loop. Therefore, we envision the emergence of
AI companions that can create end-to-end VA tools
based on simple prompts. However, just like for the
use of AI, the biomedical domain poses significant
challenges for the the development of such AI-in-the-
loop VA tools. Extending on the challenges laid out
above, we observe that (5) VA researchers frequently

1Emergent properties of an AI are capabilities not explicitly
anticipated by a developer

encounter a scarcity of biomedical training data,
which presents a significant challenge in devel-
oping unbiased and stable AI systems. The high
variability, complexity and volatility of data (see (1), (2),
and (3)), as well as complete lack of data e.g. in case
of rare or new diseases (4) requires the modification of
both, data processing algorithms and the inclusion of
new analyses and interpretations into an VA system.
However, data covering this knowledge is not or only
sparsely available to (re-)train any assistive systems.
(6) There is only a limited availability of VA code for
training or tuning AI models. The majority of VA tools
are proprietary, and their code private. Therefore, it
cannot be used to train new AI systems. This limits the
potential of generative tools to build specific biomedical
VA applications. (7) Complex interactions with com-
plex biological or medical models in exploratory
analysis tools are difficult to mimic. Biomedical
experts are highly specialized, and the interactions
are data-specific and highly variable between experts.
As such, user behavior is difficult to train and predict
and generated interactions are hard to validate. This
becomes even more challenging when designing for
inclusivity to support heterogeneous user groups,
from bioinformaticians and medical experts to non-
specialized medical personnel. (8) In compliance with
the diverse legal frameworks on the use of AI,
high-risk systems must be transparent and should
not replace human sovereignty over a decision.
Moreover, these decisions should be explainable. This
needs to be considered through the whole VA system
design ensuring that every AI-generated subtask that is
substituting human actions must be law-compliant, re-
liable, and the underlying reasoning can be monitored
and validated.

Dangers, Ethical, and Legal
Considerations

The tight integration of AI into visual data analysis
pipelines and applications for biomedical purposes in
professional environments requires careful considera-
tion of ethical and safety issues. Moreover, the use of
AI technologies is not free from dangers [9]. Errors,
mistakes, or inaccuracies in the development and use
of AI could have serious implications for the quality and
reliability of results, with potential legal and/or financial
consequences, e.g., if a patient is misclassified for a
disease or if inaccurate or incorrect predictions slow
down the process of discovering new drugs. However,
the black box nature and unreliability of powerful LLMs
and multi-modal foundation models trained on massive
sets of data, often lack the necessary detail in model
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and data documentation [9], making it difficult to ensure
the implementation of high ethical and safety standards
in downstream applications.

Recently, several policy papers and resolutions
have been published worldwide to provide a regula-
tory and ethical framework for the use of AI such as
the UNESCO Ethics of AI, the OECD Principles for
trustworthy AI which are partially reflected in national
regulatory frameworks like the US Executive Order
on the Safe, Secure, and Trustworthy Development
and Use of Artificial Intelligence, the Chinese Inter-
net Information Service Algorithmic Recommendation
Management Provisions, or the EU AI Act. A worldwide
overview on AI legislation which is regularly updated
is provided e.g. by The International Association of
Privacy Professionals (IAPP).

One of the key statements in most declarations is
the need for human oversight and fairness. While the
use of AI in research is often not as strictly regulated,
visualization researchers should be aware of these
frameworks when designing AI-supported applications.
Considering reliability, legal and ethical issues through-
out the project has the potential to increase adoption
by domain experts and/or industry and to enhance the
impact of the research results. One framework is pro-
vided by the Ethics by Design approach, which covers
the design, development, deployment, and use of AI-
based solutions. Ethics by Design considers the need
for human agency; privacy, personal data protection
and data governance; fairness; individual, social and
environmental well-being; transparency; accountability
and oversight.

Research thrives on pushing the boundaries, but
not all what is technically possible might be finally
accessible and usable. The knowledge on potential
regulations of foundation models is a prerequisite to
create sustainable and usable results. For instance
Metas’ llama3 model is currently (June 2024) not avail-
able in Europe due to regulatory reasons 2.

The future role of visual analytics in
biomedical applications

In the following discussion on the future of VA in
biomedical applications, we focus on scenarios with
complex data and analytical tasks. Therefore, we skip
simple cases related to narrow, supportive AI for accel-
erating non-critical tasks, like optimized data loading,
filtering, etc.

2https://about.fb.com/news/2024/06/building-ai-technology-
for-europeans-in-a-transparent-and-responsible-way/

The quality of the result of a decision making pro-
cess is the ultimate criterion for a performant human-
AI teaming, in particular in critical environments like
medicine or life science research. Here, very much
following Keim et al. [5], agency has to fully remain with
a human expert, who takes responsibility for diagnostic
and treatment decision-making in the medical domain,
or for the scientific integrity of the overall reasoning and
conclusions in a research context. Consequently, the
human must have an opportunity to audit all algorith-
mic results and decisions. During this process Visual
Analytics remains to play an inevitable role: It provides
tools for comparative analysis (e.g., to explore the AI-
based classification results of a cancerous patient in
context of multi-modal data of a related patient cohort),
for understanding why an AI-based assistant or second
reader made a specific suggestion (e.g. by translating
potential explanations of an AI into a more human
interpretable form by providing a visual representation
of context), or for assessing uncertainty in algorithmic
results, in particular, when real-world datasets differ
from those that the system was trained on (by visu-
alizing domain shift or uncertainty of decisions).

“Generalist” medical AI systems [8], combine the
ability to integrate multi-modal data (including text,
images, clinical, and -omics) with broad medical knowl-
edge. These systems should support complicated gen-
eral analytic tasks, such as generating full radiolog-
ical reports, or providing real-time surgical or bed-
side decision support, rather than improving or solving
some narrowly defined sub-task. Even though training
foundation models on large and diverse datasets has
significantly improved their ability to generalize across
tasks and data characteristics compared to previous AI
models, they are currently far from reliable enough to
be deployed autonomously within critical applications.
Fusing the concept of “Collective Intelligence” (CI) with
AI can be one way to overcome these limitations [10].
CI refers to the joint problem-solving performance of
several individuals, more recently also in combination
with analytical capabilities of machines, and is a trend
in current interdisciplinary AI research.

In all these scenarios, Visual Analytics will remain
an ideal tool for shaping human centered interaction
with the AI and other experts. If complex data is under-
lying a question to “the” A(G)I, it still has to be defined
and potentially selected from different large data sets
or collections, requiring potentially also quality control
of the data defining additional steps. Doing this only
with a textual prompt might be by far less efficient
than having a visual tool, allowing a much more in-
tuitive definition of a respective task. Exploration of
the unknown for hypothesis building based on highly

7

https://www.unesco.org/en/articles/recommendation-ethics-artificial-intelligence
https://oecd.ai/en/ai-principles
https://oecd.ai/en/ai-principles
https://ai.gov, https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://ai.gov, https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://ai.gov, https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://digichina.stanford.edu/work/translation-internet-information-service-algorithmic-recommendation-management-provisions-effective-march-1-2022/
https://digichina.stanford.edu/work/translation-internet-information-service-algorithmic-recommendation-management-provisions-effective-march-1-2022/
https://digichina.stanford.edu/work/translation-internet-information-service-algorithmic-recommendation-management-provisions-effective-march-1-2022/
https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
https://iapp.org/resources/article/global-ai-legislation-tracker/
https://iapp.org/resources/article/global-ai-legislation-tracker/


complex data is another important use case requiring,
e.g., comparative visualizations and interactive data
exploration and iterative query refinement. Effective,
intuitive, and trustworthy communication of results and
joint analysis is an important prerequisite to realize
collective human-machine intelligence.

Enabling AI-in-the-loop solutions that effectively
couple the power of AI driven data analytics with Visual
Analytics to enhance human abilities to cope with the
challenges in biomedical data analytics is a highly
promising yet demanding endeavour, that will remain
an active field of research to solve major challenges
including question how to cope with data and task
complexity and their dynamics across all levels of the
application affecting both, technical aspects as well
as user interface and interaction design; or how to
shape human-AI teaming as the dense integration of
AI-driven data analytics with Visual Analytics for such
complex data and tasks is non-trivial. The question
of how a user communicates and interacts with an
AI and how the AI is communicating with the user
in a transparent and explainable manner tailored to
the user and her task is an open question, that is
additionally complicated in complex scenarios. This
does not only hold for VA research, but is also an open
question addressed by AI research.

Conclusion -or- Do robots dream of
AI-generated sheep?

We anticipate that the specific challenges of biomedi-
cal applications, which include heterogeneity and lim-
ited availability of data and code examples for training,
the complexity and specialized nature of the required
domain knowledge, the complexity and dynamics of
analytical tasks, the permanent proliferation of new
acquisition devices and data types, combined with
high standards for reliability and trustworthiness, is still
slowing down the practical adaptation of AI-based so-
lutions compared to other domains with lower stakes,
such as generating content for recreational purposes.
However, we believe that, despite these challenges,
AI will ultimately lead to profound transformations also
in the biomedical domain, and we advocate shap-
ing these changes according to an “AI-in-the-loop”
paradigm, in which visualization plays an important
role. In contrast to the frequently used term “human-
in-the-loop”, which considers humans as a source of
information within an AI-based system, the term “AI-in-
the-loop” emphasizes that the ultimate focus, respon-
sibility, and control should remain with human experts
who use AI-based systems to make faster or better
informed clinical decisions, or as a powerful new tool

for scientific research.
According to recent estimates, even though the

Food and Drug Administration has approved more
than 200 commercial radiology AI products, the cor-
responding U.S. market penetration is still only around
2% [11]. We expect that our proposed “AI-in-the-loop”
approach, which is centered on supporting specific
biomedical workflows by a suitable integration of vi-
sualization and AI, will more effectively close this gap
than “human-in-the-loop” approaches, which are cen-
tered on solving specific AI tasks by accounting for
human feedback. While AI assistants should make im-
plementation and prototyping of future visual analytics
systems substantially easier and more efficient, im-
plementing the “AI-in-the-loop” approach still involves
classical stages of visualization design, such as data
and task abstraction, that are unlikely to be fully au-
tomated in the foreseeable future. Consequently, we
expect that, as long as it actively tracks progress in
artificial intelligence, and makes use of the opportu-
nities it presents to domain experts as well as tool
builders in the spirit of the proposed “AI-in-the-loop”
approach, biomedical visual analytics will continue to
play a central role in the future.

The inclusion of AI assistants in the development
of VA tools will fundamentally change how we work
as researchers. Code development implementing tra-
ditional, well-known procedures (reading models, cre-
ating UIs...) will be increasingly taken over by assistive
systems. But this only works for tasks that have been
part of the training set of the generative models. Re-
searchers will still need to develop new algorithms that
deal with new tasks or new modalities of data, design
interfaces to deal with new kinds of information or im-
plement new tasks, creation of new tools for overseeing
the performance of AI models, development of new
tools for monitoring and validating the new VA software.
However, the availability of public, labelled datasets of
VA tools (or procedures) will be scarce due to multiple
reasons, such as the proprietary nature of most of
the software, its complexity, etc. Therefore, creation of
AI assistive software for Biomedical VA tools will be
much slower as compared to other domains, such as
generative systems for image creation.

The pipeline we have proposed in Figure 2 is plau-
sible, and likely will be part of our work environments
in a few years, as we move further to more and
more capable generative AIs (Figure 3). However, the
possibilities of generative tools go beyond that. And
the prospect of AI companions that help us in our work
is very feasible. In the future, these will be pervasive,
and the development of VA tools will be fundamentally
changed by them.
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Research Opportunities

Visualization Foundations
Analysis of cognitive and psychological needs
and consequences of AI-in-the loop both on
human users and the workflows.

Enhancing and leveraging the “expertise” of
multi-modal AI models towards an artificial
visualization expert.

Integration of Visualization knowledge into AI
models.

Broadening the theory on coupling human
creativity and expert knowledge with AI ca-
pabilities.

AI for VA Tool Development
Low to no-code VA tool development, with a
focus on security, reliability, transparency, and
ethics.

Integration of different interaction modalities
with AI to build and support VA tools.

Creation of VA tools from scarce data or code
examples (few-shot VA tool generation).

AI Integration in the VA Workflow
AI-enhanced workflows, adapting to different
user profiles (skills, knowledge) and previous
and current interaction with the system.

Shifting towards multi-modal interaction with
the AI (and the data) to jointly complete a
data-driven task.

Designing new AI-in-the-loop interfaces at all
levels.

Visual AI-to-human communication methods
that provide sufficient explanations to support
accurate and reliable decision making.

Quality assessment of AI-in-the loop.

The rise of AI will not threaten our work as Visual
Analytics researchers but provides a unique opportu-
nity for boosting innovation with many open research
questions (see box “Research Opportunities”).
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