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Abstract

Several diagnostic and treatment procedures require the segmentation of anatomical structures from medical images. However,
the automatic model-based methods that are often employed, may produce inaccurate segmentations. These, if used as input for
diagnosis or treatment, can have detrimental effects for the patients. Currently, an analysis to predict which anatomic regions
are more prone to inaccuracies, and to determine how to improve segmentation algorithms, cannot be performed. We propose
a visual tool to enable experts, working on model-based segmentation algorithms, to explore and analyze the outcomes and
errors of their methods. Our approach supports the exploration of errors in a cohort of pelvic organ segmentations, where the
performance of an algorithm can be assessed. Also, it enables the detailed exploration and assessment of segmentation errors,
in individual subjects. To the best of our knowledge, there is no other tool with comparable functionality. A usage scenario
is employed to explore and illustrate the capabilities of our visual tool. To further assess the value of the proposed tool, we
performed an evaluation with five segmentation experts. The evaluation participants confirmed the potential of the tool in
providing new insight into their data and employed algorithms. They also gave feedback for future improvements.

Categories and Subject Descriptors (according to ACM CCS): 1.3.8 [Computer Graphics]: Applications—Applications; J.3 [Com-

puter Applications]: Life and Medical Sciences—Life and Medical Sciences

1. Introduction

Several diagnostic and treatment procedures require the segmenta-
tion of anatomical structures from medical images. This can be ei-
ther performed manually, semi-automatically, or automatically. In
manual segmentation, medical experts inspect 2D imaging slices
one-by-one, and delineate structures. As this procedure can be time
consuming, automatic methods are preferred, with a lot of effort be-
ing invested in algorithm development. Still, automatic algorithms
cannot account for all cases, and may perform sub-optimally.

Experts working on automatic segmentation algorithms can rela-
tively easily detect the errors. However, even for them, it is not triv-
ial to understand why or how inaccurate outcomes are produced.
Exploring and assessing segmentation errors can provide experts
with new knowledge about the performance of their algorithms —
for example, helping them to predict the anatomic locations and
circumstances under which, errors occur. Moreover, it can aid them
in confirming or generating hypotheses about their methods and,
in the long term, it can allow them to improve their segmentation
results. Even if segmentations cannot be improved, it still remains
important to be aware of potential inaccuracies. Disregarding this
information might affect diagnosis or treatment, if the latter are
based on erroneous segmentation outcomes.
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As proof-of-concept, we consider the automatic model-based
segmentation of pelvic structures [SBV*13], used as input to ra-
diotherapy (RT) planning for prostate tumors. RT is a therapeutic
procedure, where tumors are irradiated with a high dose, while the
surrounding healthy tissue is preserved. Planning such a procedure
requires the accurate segmentation of the prostate and the organs at
risk, to be spared during irradiation. Also in this case, segmentation
errors often occur, and need to be explored and assessed. This is not
feasible, with existing means of exploration.

Our contribution is a visual tool that allows experts working on
algorithms for model-based segmentation of pelvic structures, to
explore and assess the outcomes and errors of their methods. Our
approach incorporates the following two capabilities:

e [t supports the exploration and assessment of errors in a cohort
of pelvic organ segmentations. These segmentations result from
applying the same algorithm to several subjects. With this, ex-
perts inspect the general performance of the algorithm.

o [t facilitates the detailed exploration and assessment of segmen-
tation errors in the pelvic organs of individual subjects. With this,
experts can identify the specific details about the performance of
the algorithm, concerning each subject of the cohort.

To the best of our knowledge, there is no other tool with the com-
prehensive functionality that our work offers. Although we demon-



R.G. Raidou et al. / Visual Analytics for the Exploration and Assessment of Segmentation Errors

strate our visual tool on a specific case, our methods could be gener-
alized to other applications, and suit other segmentation algorithms.

2. Background: Model-based Segmentation of Pelvic Organs

RT is one of the most common treatments for prostate cancer. Its
goal is to maximize the effect of the irradiation on tumors, while
minimizing the side effects on adjacent healthy organs [WL15]. To
this end, planning is performed. For this, accurate segmentation of
the prostate and surrounding organs at risk (rectum, bladder, and
seminal vesicles) is required. Figure 1 shows the involved anatomy.

For the segmentation of these organs, automatic model-based
methods are often employed [EPW™*11,SBV*13]. In our work, we
consider the algorithm of Schadewaldt et al. [SBV*13], for the seg-
mentation of pelvic structures in CT images. In this method, struc-
tures are considered to have a known general shape. Training data
are used, to build probabilistic models that explain the shape varia-
tion of each structure. These models are used as prior information,
and are positioned in the volume. Then, they are iteratively adapted
to the boundaries of the structure of interest [EPW*11], using a
combination of rules. These are features, such as gradient magni-
tude, which have been learned from training data. Different features
might be employed for different organs, or parts of these. More de-
tails about the algorithm can be found in the papers of Schadewaldt
et al. [SBV*13] and Ecabert et al. [EPW*11].

Although the selected segmentation method is robust, it is not al-
ways accurate. Yet, the resulting inaccuracies can be detrimental for
the RT dose administration to healthy organs, with unwanted side
effects [WL15]. Our collaborating experts from Philips Healthcare
in Hamburg, working on the segmentation of these pelvic structures
need to explore, understand, and assess the segmentation results, as
well as their respective inaccuracies. To this end, they generate,
using their in-house algorithm [SBV*13], segmentations of four
organs — prostate, bladder, rectum, seminal vesicles — and their in-
terfaces, in the form of triangulated meshes. Meshes from different
subjects have already a triangle-to-triangle correspondence. Addi-
tionally, ground truth for each subject is available from delineations
of pathologists. Correspondence between the ground truth and the
segmentation outcomes has been established, as described in the
paper of Schadewaldt et al [SBV*13].

rectum

seminal
bladder vesicles

prostate

Figure 1: The anatomy of the pelvic structures involved in this
work. Image generated using ZygoteBodyTM .

From the ground truth, our segmentation experts computed four
local quality measures, per triangle [SBV*13]. These are: (i) tar-
get error, i.e., point-to-point distance from a triangle in the result-
ing mesh, to the target location in the ground truth data (in mm);
(ii) features response, i.e., the strength of a number of speci-
fied algorithm features at the target location; (1ii) weighted fea-
tures response, i.e., the feature response (inversely) weighted by
the distance to the target; and (iv) triangle area (in mmz). All
these measures are extensively used by our intended users and are
indicative of segmentation accuracy. For example, a triangle with
high target error is expected to have low feature response, meaning
that the selected features are not strong enough to attract the tri-
angle towards the correct target position. Dramatic changes in the
triangle areas can be another sign of erroneous segmentations.

Moreover, feature response profiles are computed by our collab-
orating segmentation experts per triangle, after the adaptation of
each mesh. As shown in Figure 2, the provided data of the profile
of each triangle result into a number discrete point values, along a
ray parallel to the normal of the triangle, centered to the adaptation
location of each triangle. These values indicate the strength of the
features-rules that were used for the adaptation at each position of
this ray, and they relate to the above mentioned feature responses
and target errors. During adaptation and profile computation, neigh-
boring triangles are influencing each other, as well. For this, profile
inspection in triangle neighborhoods, or in groups with similar re-
sponse, can give a better idea of the reliability, than individual trian-
gles. During such an inspection, the number and locations of peaks,
i.e., the local maxima, are important. Multiple peaks could indicate
locations with high feature responses that are competing during the
adaptation. Non-centered peaks could also be problematic.

After a discussion with our collaborators, it resulted that they
currently do not have an intuitive and easy-to-use way, to obtain
new insight into their segmentation outcomes, with respect to the
computed local quality measures, and the response profiles. They
pointed out a number of fasks that they are interested in performing:

e For the full cohort of subjects:
— Explore the distribution of local segmentation errors and re-
sponse profiles (T1-a).
— Identify anatomical locations (organs or part of these) where
the algorithm performs consistently (T1-b).
— Identify subjects that are special cases (T1-c).
e For an individual subject:
Explore the distribution and anatomical location of the differ-
ent local quality measures (T2-a).
— Discover relations between local quality measures (T2-b).
Identify response patterns, for reliability evaluation (T2-c).

3. Related Work

Visual analytics for the exploration of segmentation outcomes has
been addressed in several recent papers. Among them, there are
frameworks for the analysis of the impact of parameters on seg-
mentation algorithm outcomes, such as in the work of Torsney
et al. [TWSM*11] and Frohler et al. [FMH16]. Also, there is re-
cent work on shape variability analysis [BBP10,KLR*13,HSK11].
However, the focus of these two paper groups is not on evaluating
the employed segmentation algorithms and their results.
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Table 1: Requirement analysis concerning our application, for the tasks defined by the intended users and described in Section 2 (v : fulfilled;
x: not fulfilled; x: partially fulfilled, or profile response not fulfilled; grey shading: non-applicable).

Compatibility | Multiple Compatibility with Tasks
with Data Subjects | (Ti-a) | (T1-b) | (T1l-c) (T2-a) (T2-Db) (T2-c)
Parameter Space Visualizations x
Shape Variability Visualizations x

Earlier Comparative Visualizations x x
[SPA*14] x x * * x x x
[VLAA*13] x x x x x x x x
[VLBK*13] x x x x x x x
[vLBB15] x * x x
[GSK*13] x * * * 3

Our proposed approach

Another category comprises comparative visualization, which
rather deals with the direction of qualitative or visual evaluation
of two segmentation outcomes, with respect to each other. Busking
et al. [BBF*11] proposed visualizations for the comparison of two
surfaces, using different kinds of visual or graphical variables. In
other papers, simple overlays [GJCO1], or extensions of checker-
board visualizations on 2D imaging slices [MHG10, SGB13],
but also side-by-side comparisons of 3D volumes have been
used [AWH™ 12]. Visual variables, deformations, glyphs [ZSL*16]
and combinations of these have also been employed [PF96].
Specifically for mesh comparison, MeshLab [CCRO8] and Poly-
MeCo [SMS09] have been proposed. Most of these papers refer
to comparing two subjects, or one subject with a reference. Com-
parison of multiple subjects was, only recently, tackled by Schmidt
et al. [SPA*14]. In this work, a visual tool for the comparison of
meshes is proposed, enabling the interactive exploration of their
differences. This tool is meant for evaluating meshes generated by
different algorithms, with respect to a reference mesh and it is not
fully applicable to the data that we are dealing with. It does not al-
low to explore and compare any local quality measures along with
response profiles, which are necessary for our application. Addi-
tionally, it is limited to evaluating the visual quality of the resulting
shapes. This is predominantly done in user-selected regions, which
need to be interactively inspected.

For the evaluation of the segmentation process and outcome,
von Landesberger et al. [VLAA™13], visualize the progress of qual-
ity during the segmentation of one organ. This approach enables
the analysis of the segmentation process, but it is limited to one
subject. Later, they improve this by proposing a method to show
the distribution of quality values globally, and to select cases with

</ N

Figure 2: Response profile (cyan) of a triangle, after mesh adapta-
tion, centered at the adaptation location (black) and parallel to the
normal (ved). There is also a latent peak, denoted with the cross.
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high or low quality values for a detailed inspection [VLBK*13].
This strategy still does not allow the comparison of local quality
measures across all subjects. In a more recent paper [VLBB15],
von Landesberger et al. present a system for assessing and com-
paring segmentation quality across multiple datasets. A drill-down
approach from an overview of a group of subjects to a detailed
view of user-selected cases is employed. As follow-up, Geurts et
al. [GSK*15] propose a method for the visual comparison and eval-
uation of 3D segmentation algorithms. The goal is to determine the
best segmentation algorithm, among different alternatives. To this
end, they investigated both global and local approaches. Both pre-
vious works [VLBB15, GSK*15] are similar to ours, but they are
not fully applicable to our available data and tasks. This especially
holds for the tasks related to the exploration of the segmentation
response and the relations between local quality attributes. Table 1
shows schematically which requirements are (not) fulfilled by the
most relevant previous related work.

4. Visual Analytics for the Exploration and Assessment of
Segmentation Errors

The segmentation algorithm [SBV*13] is applied on imaging data
from a cohort of subjects. Then, the respective triangulated meshes
are generated, along with the measures described in Section 2. Our
approach enables the exploration and analysis of these measures,
using the components shown in Figure 3: (i) Exploration of the
full cohort of subjects (Section 4.1), (1i) Exploration of an error
hierarchy, to detect special subject cases (Section 4.2) and (iii)
Exploration of an individual subject (Section 4.3).

4.1. Exploration of the Full Cohort

When exploring the full cohort of segmentation outcomes, seg-
mentation experts initially need to explore the distribution of lo-
cal segmentation errors and the respective response profile values
(T1-a). Visual comparison of individual outcomes, though, may
be time consuming, but also limited, due to perception and screen
space constraints [GSK*15]. For this reason, we decided to pro-
vide an overview, at a triangle level. As mentioned in Section 2, the
individual subjects of the cohort have a triangle-to-triangle corre-
spondence. Thus, at each triangle position, we compute the mean
and the standard deviation across all subjects, of both the target
error and the response profiles.

For the target errors, mean and standard deviation are plotted in
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Figure 3: The three main components of our approach, together with the tasks from Section 2 that they address. The abbreviations denote
the different organs (P: prostate, B: bladder, R: rectum, V: seminal vesicles).
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Figure 4: Confidence scatterplot of the mean error u against the
standard deviation o, of the target error of all subjects. We denote
the three areas of performance (good: lu |G, poor: Tu |G, uncer-
tain: 16) (T1-a). Three selections are made for good (green),
poor (magenta) and uncertain (cyan) performance, and links to the
anatomy are shown (T1-b). Q1 — Q3 indicate the three quartiles.

a scatterplot, where each data point represents one triangle loca-
tion (Figure 4). Data points in the scatterplot are rendered with a
lowered opacity, to reduce clutter from overlapping points and as
a density indication. We call this representation a confidence scat-
terplot, as it can provide information about three main regions of
confidence, based on the values of the mean and the standard devi-
ation of the target error (Figure 4). To convey additional informa-
tion about the distribution of the mean and the standard deviation
of the target error across the triangles of the mesh, we denote the
first, second and third quartile of the respective distributions (Fig-
ure 4, Q1-Q3). In a confidence scatterplot, points with low mean
and low standard deviation represent triangles where the algorithm
performs systematically well. Points with high mean and low stan-
dard deviation represent triangles where the algorithm performs
systematically poorly. Finally, points with high standard deviation
correspond to uncertain areas. This is related also to task (T1-b).

For the response profiles, a different approach is followed. As al-
ready mentioned in Section 2, the reliability of the algorithm can be

assessed from the inspection of profiles in triangle neighborhoods
— and especially, for triangles with similar response profiles. To this
end, the peaks, i.e., the local maxima, are considered. A region of
triangles with single-peaked response profile is more likely to be
accurate than a region with multiple peaks. One option to illustrate
this would be to reduce the mean profile information to a single
scalar, representing the number of peaks. However, this would not
convey the entire information about the mean profiles. For this, we
retrieve clusters of mean profiles with a similar shape. These clus-
ters can, then, be represented and visualized by an average profile.

Several clustering approaches can be employed [JMF99]. How-
ever, determining a-priori the optimal value of clusters can be dif-
ficult and time consuming. For this reason, approaches such as k-
means were discarded. For our application, we consider it more
suitable to use a hierarchical clustering method. The computation
of clusters with similar mean profiles is done, using an agglomer-
ative hierarchical clustering method [WJ63]. Initially, the number
of clusters is equal to the number of triangles. This is followed by
a phase, where iteratively the two most similar clusters are merged.
Once a cluster is created, a representative, i.e., average, profile is
used in the next iteration. Clustering is performed, with the similar-
ity between two normalized profiles, p and ¢, being:

similarity(p,q) = Zl — |pli] — qli]] (€]

In this way, two mean profiles with close-by peaks are assigned
a higher similarity score, than two mean profiles with peaks fur-
ther apart. After all iterations are finished, this algorithm results
in a dendrogram, which can be interactively browsed. For visual-
ization purposes, we employ a collapsible profile tree metaphor,
with the root being the average representative profile of all trian-
gles. This can be expanded, revealing all underlying depth levels of
clusters. The user can inspect the contents of the clusters interac-
tively, without requiring to define a-priori the preferred number of
clusters. Each representative profile from a cluster is depicted in a
one-dimensional visualization, shown in Figure 5. In this visualiza-
tion, the 21 values of the representative profile are normalized to the
range [0..1]. Each value corresponds to one square and is mapped

(© 2016 The Author(s)
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Figure 5: Profile tree visualization for the exploration of the clus-
tering of profile responses (T1—-a). The mean (encoded with the
color of the squares) and the standard deviation (encoded with the
size of the squares) are depicted for the 21 values (squares) of each
representative profile (row). Three selections (purple, green, blue)
are made to show the link to the anatomy (T1-b).
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Figure 6: Exploration of the error hierarchy in the cohort, using a
collapsible tree graph representation (T1-c).

linearly to a single hue, sequential color scale. In Figure 5, peaks
are depicted in bright orange, while black denotes local minima.
The size of the squares is inversely related to the standard deviation
of a representative profile at each of the 21 positions, i.e., smaller
squares, indicate larger standard deviations. This encoding was in-
spired by the work of Hollt et al. [HPvU™*16].

After the exploration of errors and profile responses, segmenta-
tion experts need to identify whether their algorithm presents co-
herent behavior. For example, they need to identify the anatomic
locations where their algorithm systematically fails or succeeds, at
a voxel level (T1-b). To this end, we enable brushing and linking
both in the confidence scatterplot, and directly on the average ref-
erence mesh of the cohort. In this way, we establish a link between
the anatomy and the computed target errors (Figure 4). Brushing
and linking is applied, also, from the profile tree to the scatterplots
(Figure 5). Also, selections in the confidence scatterplot are fol-
lowed by visualizing the respective average profile. In this way, all
components are linked.

(© 2016 The Author(s)
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Figure 7: Qualitative exploration of the intersection of the seg-
mented mesh with the imaging slice data (T2-a) (red: bladder,
orange: prostate, yellow: seminal vesicles, white: rectum).
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Figure 8: Interactive exploration of the distribution of local quality

measures (T2-a). Selections in the histograms provide a link to
the anatomy (orange).

4.2. Exploration of the Error Hierarchy

The next required step is to provide provide an overview on the hi-
erarchy of errors in the full cohort, and allow segmentation experts
to identify subjects that are special, interesting cases (T1l-c). For
this, we employ a collapsible, undirected tree graph, to show an
overview of the average target error and standard deviation in the
full cohort (Figure 6). The root of the tree represents the full cohort,
which can be expanded to display the different subjects. These can
be further expanded to depict the different organs. The size of the
node encodes the magnitude of the average target error, while the
magnitude of the standard deviation of the target error is encoded in
the opacity of the node, but also in a halo around the circumference
(Figure 6). To increase legibility, the nodes are sorted based on the
average target error, at each depth level. Also, nodes of the tree that
are not interesting for the analysis can be interactively collapsed, to
save screen space. This representation summarizes the distribution
of target errors in the cohort, across all patients and their respective
organs. From this, users can be guided to select individual subjects
that need further exploration, in the next stage.

4.3. Exploration of Individual Subjects

Our tool answers also the requirement for a detailed exploration of
segmentation errors in individual subjects. The first step involves a
qualitative exploration of the resulting segmentation, with respect
to the imaging slice data (Figure 7). This exploration can give an
initial indication of the outcome of the segmentation, as it shows
the intersection of the resulting mesh with the imaging data. For
the exploration of the distribution and anatomical locations of the
different local quality measures (T2-a), histograms are employed
(Figure 8). Here, interactive selections provide a link to anatomy.

Discovering relations between local quality measures is also nec-
essary (T2-b). For this, we initially enable the pairwise inspec-
tion of two measures, directly on the mesh surface. This is done
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Figure 9: Discovering the relations between local quality measures (left: comparison of two measures, with color encoding and glyphs,
directly on the mesh surface; right: multi-dimensional visualization of local quality measures in a scatterplot matrix, where selections (blue,
purple and green) provide a link between different scatterplots, and also to the anatomy) (T2-b).
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Figure 10: Profile tree visualization for the exploration of the clus-
tering of profile responses of an individual subject (T2-c). Se-
lections (cyan, purple) enable a link to the anatomy and the local
quality measures.

by color encoding one local quality measure with a reduced heated
body colormap, and a second measure with line glyphs, along the
normal of each triangle of the mesh (Figure 9-left). The size of
the glyphs encodes the magnitude of the measure, at each trian-
gle position. Still, this representation limits the exploration of re-
lations to only two dimensions, while glyphs may introduce oc-
clusion. To overcome this, a scatterplot matrix (SPLOM) is em-
ployed (Figure 9-right). The SPLOM was preferred over other
multi-dimensional representations, e.g., parallel coordinate plots,
due to the previous familiarity of the intended users. Brushing and
linking in the scatterplot matrix facilitates finding and analyzing
relations and patterns, across multiple quality measures.

Finally, the identification of patterns in the algorithm response

enables segmentation experts to evaluate the algorithm reliability,
for each individual subject (T2-¢). To this end, we use the same
approach, as the one proposed for the cohort exploration. Initially,
we retrieve clusters of profiles with similar behavior, using the same
hierarchical clustering method, as in task (T1-c). Then, a similar
profile tree metaphor is employed. Here, each representative pro-
file is depicted in a one-dimensional visualization that highlights
the peaks of the profile clusters (Figure 10). As we have only one
subject, the standard deviation encoding is not necessary. Interac-
tion is employed to enable browsing the clustering hierarchy. Also,
if a cluster is selected in the profile tree, the respective quality mea-
sures and the anatomical location are highlighted, in the SPLOM
and the mesh, respectively (Figure 10).

Implementation. The application is developed in WebGL, using
Three.js and D3 js. It is compatible with all browsers and platforms.

5. Results: Usage Scenario

In this section, we elaborate on a usage scenario. Our purpose is
to illustrate the functionality and some initial results that can be
achieved with our proposed visual tool. This usage scenario has
been guided by our collaborating segmentation experts, based on
their previous knowledge and expectations. It was used to explore
their data and to confirm hypotheses about their algorithm.

5.1. Dataset

The dataset employed for this usage scenario consists of a cohort
of eight subjects. The explored data consisted of: (i) CT volu-
metric data for all eight subjects, with dimensions 320 x 320 x 120
and a spatial resolution of 1.563 x 1.563 x 1 mm. (ii) A refer-
ence (average) mesh and the meshes of the eight subjects, each con-
taining 11,606 triangles with a triangle-to-triangle correspondence
and organ labels. (iii) The respective local quality measures per-
triangle. (iv) The 21-valued profile response data, per-triangle.

(© 2016 The Author(s)
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5.2. Exploration of the Full Cohort

For the exploration of the full cohort, the average reference mesh
is employed, together with the mean and standard deviation of the
target error, and the mean and the standard deviation of the profile
responses, per-triangle. Initially, the distribution of the local seg-
mentation errors and profiles (T1l-a), and also their anatomical
correspondence (T1-b) are explored. In Figure 4, we illustrate
in the confidence scatterplot the mean target error against the stan-
dard deviation at each triangle position, for the full cohort. From
this, we can divide the algorithm performance into three categories:
good, poor and uncertain. The good (green) and poor (magenta)
categories are much less dispersed than the uncertain one.

Through brushing and linking, we can identify the anatomic re-
gions of good performance, which correspond to the prostate and
also its very adjacent surfaces (Figure 4, green). These are the parts,
where the algorithm achieves high precision and high accuracy.
Poor performance can be seen mainly in the seminal vesicles (Fig-
ure 4, magenta), which can be explained by the fact that seminal
vesicles are small structures that may be hard to discern, and also
are highly variable in shape. These are the parts, where the algo-
rithm achieves low accuracy, but high precision. The rest, i.e., the
biggest part of the bladder and also the top half of the rectum be-
long to the uncertain performance category. In particular, triangles
of the bladder or the rectum that are further away from the prostate
(cyan) are more uncertain, i.e., have a low accuracy and low pre-
cision. This might be related to the high variability in the shape of
these two organs. An additional reason for this might be that the
employed algorithm produces segmentations used for RT planning
in patients with prostate tumors. This is expected to affect structures
closer to the prostate. Thus, the segmentation algorithm might be
promoting better results for parts closer to the prostate.

The profile exploration in Figure 5 shows interesting results, as
well. Despite the fact that some triangles have an unusual profile
response, i.e., a profile where the peak was not in the middle (Fig-
ure 5, purple, green and blue) these triangles still manage to achieve
a low target error, as they are influenced by neighboring triangles.

5.3. Exploration of Error Hierarchy

By exploring the error hierarchy in the tree graph (T1l-c), we
can identify the subjects and organs, where larger errors appear.
From the representation illustrated in Figure 6, we identify Pa-
tient18 as the subject with larger errors, and Patient3 as the subject
with smaller errors. For Patient18, the segmentation of the bladder
has the largest error, while the interface between the bladder and
the prostate seems to be well-segmented. For Patient3, the segmen-
tation of all organs and their interfaces has small errors. Patient8
is also another interesting case, where most of the organs have a
high error. Here, the bladder and the interface between the prostate
and the seminal vesicles segmentations have the highest errors, as
depicted in Figure 6. From this exploration, we can select which
subjects need to be explored individually, in more detail.

5.4. Exploration of Individual Subjects

We explore individually two cases - Patientl8 and Patient3 - iden-
tified previously, as the worst and best results, respectively.

First case — Patient18. For this subject, the segmentation outcome

(© 2016 The Author(s)
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had the largest error. An initial qualitative exploration of the inter-
section of the segmented mesh, with respect to the imaging slice
data (T2-a), as illustrated in Figure 7, indicates the locations
where the algorithm had a bad performance. The prostate contour,
denoted with white in the coronal slice (middle), seems to be well
aligned with the borders of the organ on the CT slice. However,
the bladder (red) is not. The tip of the bladder has been missed and
also a distal shift is visible. The histograms in Figure 8 (T2-a)
show a large peak in the distribution of feature response measure
(second row, left) at the zero value, but also at the maximum value.
The first peak indicates that for many triangles no suitable feature
could be discovered, and that there may have been a problem with
the feature selection. The respective triangles are located at the top
of the rectum and on the tip of the bladder (Figure 8, orange). The
second peak corresponded to well-segmented triangles.

Upon inspection of the feature response against the triangle area
measure (T2-b) in Figure 9-left, we see that the tip of the blad-
der corresponds to a low feature response, denoted with the red
color, and to low triangle area values, denoted with smaller-sized
glyphs. We confirm this also in the SPLOM (Figure 9-right). Sev-
eral clusters are easily identified when plotting the two measures,
in the scatterplot in the fourth column and third row. These clusters
include one with low response values (blue), one with low triangle
area (green) and one cluster in the middle (purple). Selections pro-
vide insight into the physical location of these clusters (Figure 9-
right), revealing interesting information. The purple cluster corre-
sponds to the areas at the sides of the bladder that presented the
distal shift, in the previous qualitative exploration. The blue cluster
corresponds to the wrongly segmented tip of the bladder and top of
the rectum, and the green cluster corresponds to the well segmented
regions of the bottom part of the rectum and the prostate. This ex-
ploration suggests a lack of strong features in the bladder and top
of the rectum that may be responsible for the errors.

The profile information of this subject is also investigated (T2-
c). Several triangles highlighted in Figure 10 are triangles where
the feature response profile did not contain any peak close to the
middle (cyan, purple). In practice, it is acceptable if a triangle has
a feature response profile without peaks, as long as most of the
neighbors do not present this same behavior. The position of neigh-
boring triangles can positively influence the position of a triangle.
In our case, these cyan and purple triangles add up to a total of
4,590, which is almost % of the mesh and they seem to form in
their majority coherent regions. Therefore, an absence of peaks in
these profiles indicates that no information was available on how
to modify the triangles location and that the current location of the
triangle is not supported by any of the selected features.

Second case — Patient3. For this subject, the segmentation outcome
had the smallest error. An initial qualitative exploration of the in-
tersection of the segmented mesh with respect to the imaging data
(T2-a) showed that the segmentation outcome matches well the
borders of the organs in the slices (Figure 11-a). The histograms
(T2-a) show a large peak in the distribution of the feature re-
sponse measure at the zero value, but also at the maximum value
(second row, left). The first peak indicates that for some triangles
no suitable feature could be discovered, while the second peak cor-
responded to well-segmented triangles with a high feature response
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Figure 11: Usage scenario for a subject, where the algorithm has a good performance (Patient3). (a) Exploration of the intersection of the
mesh with imaging slice data; (b) Exploration of the distributions of the quality measures and link to the anatomy (orange); (c) Exploration
of relations between quality measures and link to the anatomy; (d) Selections directly on the mesh (green and blue), and exploration of
corresponding quality measures; (e) Profile response exploration, and link to the anatomy.

(Figure 11-b, orange). In the SPLOM (T2-b), the majority of
points has a low triangle area, but there are several data points,
i.e., triangles, with an outlier behavior (Figure 11-c, green). Upon
selecting those data points for further exploration, they correspond
to the triangles on the top and the bottom of the rectum. We are
also interested in seeing which parts of the meshes correspond to a
low feature response (Figure 11-c, blue). These parts are few and
scattered around the mesh. They have mostly a target error smaller
than 4mm (second row, fourth column).

Another approach to investigate the segmentation quality is to
select triangles on the mesh and inspect the attribute value distribu-
tions in the scatterplots. Figure 11-d shows a selection containing
the prostate and a small part of the adjacent organs and, also, a
selection far away from the prostate, on the rectum (green). The
scatterplots show the distribution of the selected triangles mapping
the feature response against the triangle area and the target point
distance. The majority of triangles far from the prostate (blue) have
both high and low triangle area. The selection on the rectum (green)
has low triangle area. As mentioned before, dramatic changes in
these values indicate segmentation errors. The profile information
of this subject is also investigated (T2-c). Only few triangles

(1,231) have a profile without a peak in the middle. These are al-
most 1—10 of all triangles, and they are evenly spread through the
whole mesh (Figure 11-e, cyan and magenta).

6. Evaluation

To assess the value of our visual tool, we designed an evaluation,
inspired by the paper of Lam et al. [LBI*12]. The evaluation was
performed with five experts, working on developing segmentation
algorithms. The group of participants included one professor in the
field of Medical Image Analysis, three research scientists in the
field of Image Processing and one scientist in the field of Com-
puter Science. We did not include clinical experts, as they are not
the intended users of our tool. Their experience with segmentation
algorithms varies from seven years (for two people) to more than
twenty years (for one person). All of them have also a radiological
background. Four evaluators are male and one is female. They all
have normal vision, two wear glasses and nobody is colorblind.

The evaluation had to be conducted remotely, and the partici-
pants were not able to interact with the tool. During the session,
we demonstrated step-by-step the visual tool, using data provided
by the experts and well-known to them. We demonstrated the main

(© 2016 The Author(s)
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Figure 12: Rating results for the first part of our evaluation, for each of the tasks of our proposed tool. The scale range is [—3..+ 3], but we
only received answers higher than 0. With the additional vertical lines, we denote the median of each rating.

components of the tool, simulating the visual environment for the
exploration and analysis of segmentation errors. The evaluation
participants followed the demonstration. They could interrupt at
any moment to make exploratory requests, e.g., selections and in-
teractions that could help them analyze and understand their obser-
vations. We allowed them to discuss with each other these observa-
tions, but not their opinion on the tool.

To document their opinion on the demonstrated visual tool, they
completed a questionnaire. This consisted of two parts. The ques-
tions of the first part were related to the tasks, presented in Sec-
tion 2. We divided task (T1-a), to evaluate separately the visu-
alizations employed for the error distributions and for the profile
responses. Each question required an open answer, and also rating
in a seven-point scale [—3.. 4 3]. We evaluated four aspects: Utility
(Does it do what it is meant to do?), Perceived Usability (Would
I be able to learn and use it?), Appeal (Do I like it?) and Overall
Feeling (How do I feel about it, in general?). The second part of the
questionnaire included several questions regarding strengths, limi-
tations, missing features of the tool and proposals for improvement.

Ratings. Figure 12 summarizes the results of the first part of our
evaluation. There was no correlation with respect to the experience
level of the evaluation participants. Most of the evaluated aspects
ranked on the positive side of the scale (> 1), while only two re-
ceived a neutral grade (0). All aspects have a median value of at
least two, apart from one that has a median of one. The lower values
were all documented for the profile response part of task (T1l-a,
profiles) and were all given by the same person. The error dis-
tribution part of task (Tl-a, errors) and the error hierarchy
exploration (T1-c) were, in general, rated higher than the rest.

Open Answers. The above mentioned ratings are in agreement
with the open answers of the first part, and also with the second part
of the questionnaire. The evaluators considered the tool to be over-
all intuitive and potentially easy to use. One evaluator commented
that "it is a light-weight web-based tool, which makes it highly opti-
mized for model-based segmentation analysis", due to the involved
large data. The feature that received most positive comments was
the dynamic selection of triangles on the meshes, on the scatterplot
and also their in-between link, i.e., (Tl-a, errors), (Tl-b),
(T2-a) and (T2-b). Yet, for the selection on the mesh, an eval-
uator commented that he would like to have visual feedback for the
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selections. Another appreciated feature was the tree graph, for ex-
ploring the error hierarchy in the cohort (T1-c). One evaluator
commented that he would actually like to use it, to explore a much
larger cohort of segmentation outcomes.

Feedback for Improvement. Most of the participants gave feed-
back about improving the cohort profile response part (Tl-a,
profiles). First, they commented that the visualization of the
cohort profile responses takes some time to understand. It does
not allow to change the similarity measure, apart from the mean
values during clustering. One participant commented that the rep-
resentation for the profiles in the cohort can be even reworked to
be presented as an average curve, with a confidence band that de-
notes variability. This is in contrast to the positive opinion that the
evaluators expressed for the individual profile response part (T2-—
c), which was considered more intuitive and rated much higher.
Another participant disliked, in particular, the glyphs used in task
(T2-b). These limitations were proposed as points for future
work, along with a simultaneous visualization of multiple profile
data. Also, functionality for annotating observations and for mak-
ing a report from these, along with captured screenshots was pro-
posed as future work.

7. Conclusions and Future Work

We introduced a visual tool to enable experts, working on algo-
rithms for the model-based segmentation of pelvic organs, to ex-
plore and analyze the outcomes and errors of their methods. Our
approach supports the global exploration of errors in a cohort of
pelvic organ segmentations, where the performance of the algo-
rithm can be assessed. Also, it enables the exploration and assess-
ment of segmentation errors for individual subjects. We demon-
strated the functionality of our tool with a usage scenario. Also, we
performed an initial evaluation with five segmentation algorithm
researchers, who confirmed the exploratory value of the tool, and
gave feedback for future improvements.

A direction for future work includes improving the functionality
for the exploration of the profile responses in the cohort. Adding
functionality for the comparison of different aspects of the data,
such as the local quality errors and profiles of different subjects, is
also important. Exploring the impact of parameters used in the seg-
mentation, and also the relation of the shapes of the various organs
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to the algorithm performance would be another interesting enrich-
ment. An additional evaluation to quantify the experience of the
user is needed, and will be conducted in the future. The proposed
visual tool is a promising basis for segmentation experts. It allows
them to gain more knowledge on the performance of their segmen-
tation algorithms, and to determine strategies to improve their seg-
mentation results.
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