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Abstract

Advancements in the acquisition and modeling of flow fields result in unsteady volumetric flow fields of unprece-
dented quality. An important example is found in the analysis of unsteady blood-flow data. Preclinical research
strives for a better understanding of correlations between the hemodynamics and the progression of cardiovas-
cular diseases. Modern-day computer models and MRI acquisition provide time-resolved volumetric blood-flow
velocity fields. Unfortunately, these fields often remain unexplored, as high-dimensional data are difficult to con-
ceive. We present a spatiotemporal, i.e., four-dimensional, hierarchical clustering, yielding a sparse representation
of the velocity data. The clustering results underpin an illustrative visualization approach, facilitating visual ana-
lysis. The hierarchy allows an intuitive level-of-detail selection, largely retaining important flow patterns. The
clustering employs dissimilarity measures to construct the hierarchy. We have adapted two existing measures for
steady vector fields for use in the spacetime domain. Because of the inherent computational complexity of the
multidimensional clustering, we introduce a coarse hierarchical clustering approach, which closely approximates
the full hierarchy generation, and considerably improves the performance. The resulting clusters are visualized
by representative patharrows, in combination with an illustrative anatomical context. We present various seeding
approaches and visualization styles, providing sparse overviews of the unsteady behavior of volumetric flow fields.

Categories and Subject Descriptors (according to ACM CCS): I.5.3 [Pattern Recognition]: Clustering—Algorithms
& Similarity measures, I.3.3 [Computer Graphics]: Picture/Image Generation—Line and curve generation &
Viewing algorithms, J.3 [Computer Applications]: Life and Medical Sciences—Medical Information Systems

1. Introduction

Analysis of flow phenomena plays an important role in many
research areas. Over the past few decades, advancements in
the acquisition and modeling of flows have led to improved
descriptions of the dynamics, providing unsteady volumetric
flow fields of unprecedented quality. Visual analysis of these
high-dimensional flow data is increasingly challenging.

An example is found in patient-specific blood-flow fields,
obtained through computational fluid dynamics models, or
measured by imaging modalities. There is an increasing inte-
rest to understand these blood-flow fields. New insights may
be obtained through quantitative and qualitative analysis, re-
lating blood-flow patterns to the progression of diseases.

These insights potentially improve diagnosis and progno-
sis for different application areas. For instance, blood flow
plays an important role in pathogenesis of various cardio-
vascular diseases [CCA∗05, Ebb11].

Interpretation of unsteady velocity fields is exceedingly
challenging. For the blood-flow application, the process in-
volves a mental reconstruction of the anatomical structu-
res, combined with a profound understanding of the blood-
flow patterns in relation to the morphology. These patterns
should be inspected throughout the cardiac cycle. Conven-
tional slice-based inspection is ineffective for this purpose.

We present an abstract representation of time-resolved vo-
lumetric flow fields, based on spatiotemporal hierarchical
clustering. Therefore, we introduce a coarse hierarchical clu-
stering method, which efficiently clusters the unsteady velo-
city data. The clustering relies on a dissimilarity measure,
which can be changed for different applications. We have
adapted two distinct dissimilarity measures for steady volu-
metric vector fields for the spacetime domain.

Using the hierarchy, the desired level-of-detail can be se-
lected intuitively. Lower levels are closer to the original field,
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Figure 1: A sagittal slice of one phase of the 4D PC-MRI
blood-flow velocity data, showing the acquired directions.
(a) Right-to-left, (b) anterior-to-posterior, (c) feet-to-head.

and higher levels provide a sparse overview (Fig. 2). Typical-
ly, higher levels of abstraction yield comprehensive visuali-
zations, reducing visual clutter and occlusion, while preser-
ving important flow characteristics. We present a patharrow
visualization to represent the obtained clusters. Furthermore,
we have investigated several spatiotemporal seeding approa-
ches, conveying the unsteady nature of the flow field. For the
blood-flow application, an anatomical context visualization
was included.

To demonstrate the clustering and visualization techni-
ques, we present various unsteady volumetric blood-flow ve-
locity fields. The data are mostly acquired by phase-contrast
magnetic resonance imaging (PC-MRI) (Fig. 1). Additional-
ly, we use simulated blood-flow velocity data. Although our
methodology is largely motivated by the blood-flow applica-
tion, no domain-specific knowledge is employed. All techni-
ques can therefore be applied generically to other unsteady
volumetric vector fields.

An overview of the hierarchical clustering and the blood-
flow visualization is presented in figure 3. The results of the
proposed clustering approach were validated using artificial
data. We present a qualitative and a quantitative evaluation
of the clustering results, assessing the parameter sensitivity
and noise robustness of our method.

In summary, the main contributions of this work are:

• A coarse hierarchical clustering approach for time-
resolved volumetric velocity fields, including two dissi-
milarity measures adapted for the spacetime domain.

• An illustrative visualization of spatiotemporal clusters,
using representative patharrows. For the blood-flow ap-
plication, we include an anatomical context.

2. Related work

Various flow visualization techniques have been employed
to analyze unsteady vector fields, aiming to convey the es-
sential aspects. For instance, there are various texture-based
visualizations [LHD∗04], which have shown to be highly ef-
fective for two-dimensional vector fields. However, in the
three-dimensional domain, clutter and occlusion impair the
visualization. The conveyed information is typically redu-
ced, for instance through transparency [IG98].

Figure 2: Hierarchical clustering allows for intuitive level-
of-detail selection, without a priori knowledge of the data
domain.

Geometric primitives, such as particle spheres and inte-
gral lines, are also used to sparsely convey flow informati-
on [MLP∗10]. Inspection is often performed locally, without
a prior overview of the data. Local inspection is often based
on regions-of-interest for seeding [HFS∗11, vPOB∗11].

Geometry-based visualizations are often used for the qua-
litative analysis of patient-specific blood-flow fields in pre-
clinical research [CCA∗05, Ebb11]. In the domain-specific
literature, these visualization are used to communicate
blood-flow patterns, for instance in the aorta [MDH∗04,
HH08], in relation to Marfan syndrome [KEW∗04], or for
congenital birth defects [VSSB10]. An extensive overview
of applications was provided by Markl et al. [MKE∗11].

Besides geometry-based visualizations, other techniques
emanate from a data-driven approach, extracting features to
simplify the vector fields. These features become the focus
of the visualization [PVH∗03]. Based on a set of features,
a topological structure of the flow field can be derived and
visualized [TS03]. Topology extraction and visualization for
vector fields is an active field of research [PHCF12], where
unsteady flows remain a challenging topic [PPF∗11]. In ad-
dition, topology extraction is challenging for measured data,
because the used derivative information is sensitive to noise.

Instead of detecting specific features in the vector field,
an alternative approach is to cluster the vector field, accor-
ding to a pre-defined measure of dissimilarity. Telea and
Van Wijk presented a clustering approach for steady flow
fields [TvW99]. They cluster the field in a bottom-up ap-
proach, based on an elliptic dissimilarity function. Another
bottom-up approach for steady flow fields was presented by
Kuhn et al. [KLG∗11]. Instead of a hierarchical approach,
they employ a scale-dependent analysis of integral curves,
limiting the detail selection to a fixed number of scales.

Alternatively, clustering may be performed without boo-
lean merging or splitting, using a diffusion process to en-
hance correlation in the cluster set [GPR∗00, GPR∗01]. Alt-
hough untruthful delineation of cluster boundaries is avoi-
ded, a diffusion process becomes computationally expensive
in the spatiotemporal domain, especially for larger data sets.
Moreover, storage of the velocity fields at various scales is
costly in terms of memory usage.

c⃝ 2012 The Author(s)
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Figure 3: Overview of the visualization framework, based on spatiotemporal hierarchical clustering. The gray dashed arrows
depict pre-processing steps. (1) A tMIP volume is generated, and (2) an iso-threshold captures the voxels that are clustered.
(3) Next, the cluster hierarchy is constructed. (4) Using the cluster tree, labels are generated per cardiac phase. After pre-
processing, the real-time visualization is generated using the available data structures, as depicted by the solid blue arrow.

To the best of our knowledge, only Yu et al. [YWM07] ha-
ve presented a clustering technique for unsteady volumetric
vector fields, dealing with the difficult relation between the
space and time domains. In accordance to our work, they
employ a hierarchical clustering, providing level-of-detail
selection. However, Yu et al. have employed a single dis-
similarity measure, based on the work by Telea and Van Wi-
jk [TvW99]. Moreover, their clustering relies on an adapti-
ve grid sampling, which is based on data-specific features.
Instead, we present a generic coarse hierarchical clustering
approach, independent of the application domain. Obtaining
application-specific knowledge is laborious, and requires to
contemplate a wide variety of cases.

In the following, we present visualizations of unsteady
volumetric blood-flow information, based on spatiotempo-
ral hierarchical clustering. In contrast to the work by Kuhn
et al. [KLG∗11], we do not aim to visualize the cluster boun-
daries, as they do not represent a physical entity. Instead, we
adopt the notion of representative integral lines. These lines
are seeded at the center of the clusters, and are assumed to
represent the flow within each cluster. Patharrows are used
to visualize the flow, based on these integral lines.

3. Clustering

Hierarchical clustering benefits from an intuitive level-of-
detail selection. No prior domain knowledge is required, be-
cause the method directly employs the data characteristics.
Furthermore, no a priori selection of the number of clusters
is needed. The number of clusters depends on the dimensi-
ons of the data set, as well as the complexity of the flow pat-
terns, which cannot be predicted beforehand. Hierarchical
clustering is scalable to high-dimensional data, and hence
suitable for time-resolved velocity fields.

3.1. Preprocessing

Before clustering, a few preprocessing steps are required
(Fig. 3, steps À and Á). First, a temporal maximum inten-
sity projection (tMIP) is generated, providing a static repre-
sentation of the time-varying flow speed [vPOB∗10]. Next,
an iso-threshold is applied to the tMIP volume, capturing the
voxels that are considered for clustering. The velocities and
the voxel mask are then used to perform the clustering (Fig.
3, step Â). The voxel mask reduces the amount of voxels that
are included in the cluster process, increasing the computa-
tional performance. This approach be applied generically to
unsteady flow data on regularly-sampled grids.

3.2. Spatiotemporal hierarchy

The hierarchy is described by a precomputed binary cluster
tree. A binary tree of the flow data can be constructed by a
top-down [HWHJ99] or a bottom-up approach [TvW99].

The clustering is initiated from the data voxels, defined as
the leaves of the cluster tree. Top-down division can be per-
formed in various ways, leading to different results. Instead,
we employ a bottom-up approach, consistently generating
the desired hierarchy. Iterative merging of individual clusters
leads to the tree nodes, based on dissimilarities between spa-
tiotemporally neighboring clusters. Our optimized approach
is described in subsection 3.4. In the following subsection,
we present the selected dissimilarity measures (Fig. 4).

3.3. Four-dimensional dissimilarity measures

We have adapted two measures for the spatiotemporal do-
main. A physically substantiated coupling between the spa-
tial and the temporal domain is nontrivial, and hence we treat
the dimensions equally for our dissimilarity measures.

c⃝ 2012 The Author(s)
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Figure 4: The clustering yields different results, using va-
rious dissimilarity measures. (a) An artificial vector field
is clustered using: (b) the elliptical dissimilarity (α = 0.9,
ω = 0.9), and (c) the local linear expansion dissimilarity.

An elementary entity to represent a cluster is the average
flow speed, based on the magnitudes of the velocity vectors.
However, flow velocities with deviating directions should
not be merged into a cluster. Therefore, the average v̄ of all
velocity vectors in a cluster seems appropriate. The dissimi-
larity between clusters can also be measured by an average
of directions. However, this approach does not take into ac-
count position information, nor does it consider specific flow
patterns. Therefore, two extended dissimilarity measures are
used, combining velocity and position information.

3.3.1. Elliptical

The elliptical dissimilarity measure (Fig. 4b), introduced by
Telea and Van Wijk [TvW99], includes spatial information
using the positional average x̄. The measure dell combines a
velocity dissimilarity dv, and a positional dissimilarity dp in
a linear fashion, controlled by weighting parameter ω:

dell(x̄1, v̄1, x̄2, v̄2) = ω dp(x̄1, x̄2)+(1−ω) dv(v̄1, v̄2).

The velocity dissimilarity dv is similar to a Euclidean di-
stance, with the exception that a higher cost is associated
with flow deviations perpendicular to the average cluster
flow. This anisotropic behavior is achieved by modeling the
iso-error contours around the flow vector with an ellipse.

The positional dissimilarity dp is defined accordingly. The
iso-error contours describe the positional dissimilarity, mo-
deled with an ellipse oriented along the velocity vector. The
aspect ratio of the ellipse is parameterized by a parameter α.
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Figure 5: Schematic depiction of a bottom-up generation of
a full cluster hierarchy. Tree nodes are merged, iteratively
processing the two clusters with the smallest dissimilarity.

For the time-varying data, positions are defined in space-
time: x̄4D = (x,y,z, t). The dimensional disparity is solved
by extending the velocity component with a constant, trans-
forming the component v̄4D = (u,v,w,1) into spacetime.

3.3.2. Local linear expansion

Instead of average positions x̄ and velocities v̄, local linear
approximations of the flow field may be used to preserve
flow patterns. Carmo et al. [CNPBY04] presented the lo-
cal linear expansion dissimilarity measure, which aims for
a linear model that estimates the velocities vi within each
cluster (Fig. 4c). The linear model describes the relation bet-
ween the voxel positions xi and the modeled velocity v̂i as:

v̂i = Axi − v̄,

where A is a matrix describing the velocity gradients, esti-
mated by a least squares fitting over N cluster voxels. For a
cluster C, the total squared error ε is given by:

ε(C) =
N

∑
i=1

||v̂i −vi||2,where vi ∈C.

The dissimilarity measure dlin is defined by the cost to merge
two clusters, C1 and C2, into a new cluster Cmerged :

dlin(C1,C2) = ε(Cmerged)+(ε(C1)+ ε(C2)) .

To the best of our knowledge, this measure has not been ap-
plied to time-varying velocity data before. To achieve this,
we extend matrix A, proposed by Carmo et al. [CNPBY04],
to include the spatial and temporal gradients, resulting in a
4×3 matrix that captures the relation between the spatiotem-
poral position xi, and the three-dimensional velocities vi.

3.4. Coarse hierarchical clustering

Processing of high-dimensional data inherently leads to si-
gnificant computational cost. Hence, clustering is general-
ly applied to small 2D and 3D examples (e.g., [TvW99]).
To obtain acceptable performance for actual measured da-
ta, the computational complexity should be reduced, without
downscaling the data dimensions by plain subsampling.
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Figure 6: Schematic depiction of a coarse bottom-up gene-
ration of the cluster hierarchy, requiring half the number of
iterations in comparison to a full cluster tree generation.
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A major performance bottleneck is the repetitive search
for the smallest dissimilarity. This operation has a comple-
xity of O(n), and the number of iterations also scales with
O(n). The overall complexity therefore becomes O(n2) for
a straightforward implementation. In particular, the initial
phase of the clustering is computationally expensive, becau-
se the number of clusters is still relatively large.

Therefore, we introduce the coarse hierarchical clustering
(CHC) approach. Instead of merging a single pair of clusters
(Fig. 5), the CHC method merges multiple clusters per itera-
tion (Fig. 6). An incremental dissimilarity threshold dth is in-
troduced, causing all cluster pairs with a dissimilarity smal-
ler than this threshold to merge simultaneously. For each ite-
ration, dth is increased with a factor ∆dth. This reduces the
computational complexity by lowering the number of itera-
tions, as well as the number of dissimilarity computations.

We have performed several experiments with varying ∆dth
values. For the blood-flow application, the algorithm approa-
ches a linear complexity for an increment of ∆dth = 0.01.
This threshold yields a good balance between computatio-
nal cost and cluster quality for both dissimilarity measures.
The CHC cluster results were visually compared with the
full cluster tree, as depicted in figure 7. We observe good
correspondence in the temporal evolution of both cases.

Merging of multiple clusters per iteration affects the re-
sulting tree, and hence provides an approximation of the true
data hierarchy. However, it is fair to assume that small varia-
tions in the order of clustering hardly affect the cluster tree
structure. Whenever clusters within an iteration are neigh-
bors, small deviations will occur. These deviations depend
on the user-defined threshold increment ∆dth.

In addition to the algorithm complexity, performance of
the clustering also depends on other aspects. For instance,
we assume a substantial amount of background informati-
on in the data, which is discarded prior to processing. Fur-
thermore, implementation aspects greatly influence the per-
formance, such as the data structure that stores dissimilarity
values. The operations performed on the container include

(a) (b)

Figure 7: Qualitative comparison of the cluster boundari-
es, based on a planar reformat through the volunteer PC-
MRI blood-flow data at 330ms. The selected hierarchy level
is 99.98%. (a) A full hierarchical clustering, in comparison
to (b) the coarse hierarchical clustering (CHC) approach,
with a threshold increment of ∆dth = 0.01.

Table 1: Complexity of specific container operations on the
set of dissimilarities, used for the hierarchical clustering.

Operation Dynamic array Linked list Balanced tree
Lookup O(n) O(n) O(1)
Insertion O(1) O(1) O(logn)
Deletion O(n) O(1) O(1)

insertion, deletion, and lookup of the minimum value. The
operation complexity varies per container type (Table 1).

The unsorted dynamic array container is discarded, due to
the relatively expensive lookup and insertion. In comparison
to the unsorted linked list, insertion is more expensive with
a sorted balanced tree, due to an additional search operation.
However, lookup and deletion are efficient (Table 1).

We have implemented the clustering with these contai-
ner types, employing the Standard Template Library (STL)
for the C++ programming language. This confirmed the
theoretical complexity O(n2) for the linked list, however
the balanced tree did not nearly achieve the complexity of
O(n logn). The best performance was obtained by our cu-
stom performance-optimized implementation of a linked list.

4. Visualization

4.1. Hierarchy selection

The visualization relies on a selected level-of-detail, using
an intuitive percentage of the cluster tree. Comprehensive vi-
sualizations are obtained at the top-most percentages of the
tree. The level-of-detail is the only essential parameter of the
visualization, and should be explored by the user. Based on
the selected level-of-detail, the spatial structure of the clu-
sters can be reconstructed for each time-point. The clusters
are represented by a labeled volume (Fig. 3, step Ã).

4.2. Center point selection

The cluster boundaries is not directly visualized, as they con-
vey no evident physical entity in the blood-flow field. In-
stead, we show the clusters by representative pathlines, see-
ded at the cluster centers. These cluster centers can be defi-
ned spatially, or in the spacetime domain.

The 3D cluster centers can be generated from the recon-
structed clusters per time-point. An intuitive approach would
be to compute the center of mass. However, this center may
reside outside the boundaries for concavely shaped clusters.

Instead, we devise an approach that locates the point wi-
thin the cluster C with the smallest distance to all N positions
within that cluster. Using the Euclidean distance, the center
position xm is defined by its index m as:

m(C) = argmin
i

1
N

N

∑
j=1

||xi −x j||,where xi, j ∈C.

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 8: Simplified representation of the patharrow see-
ding. The horizontal axis shows the time, while the spatial
domain is represented on the vertical axis. One time-frame
is highlighted in yellow. (a) For 3D seeding, a spatial cen-
ter is computed for each existing cluster, and short pathlines
are traced interactively. (b) For 4D seeding, a spatiotempo-
ral center is computed, and long pathlines are precomputed.

To avoid a disproportionate performance penalty, we avo-
id computing all mutual distances. As the visualization does
not require the exact center, we perform a stochastic samp-
ling per cluster, and then compute the center. Based on visual
inspection, a minimum of hundred samples is sufficient.

The clustering is performed in four dimensions, and hence
the clusters reside in the spacetime domain. However, a phy-
sically meaningful definition of the cluster centers in 4D is
nontrivial, because of the disparity between space and time,
in terms of units and dimensionality. To prevent an unsub-
stantiated coupling between space and time, we first select
the temporal center by computing the median of the time
spanned by the 4D cluster. Subsequently, the spatial center
is computed, similar to a 3D cluster center.

4.3. Representative patharrows

The four-dimensional constructs are inherently challenging
to communicate to a human observer. Moreover, the patterns
in the unsteady flow data are continuous entities, which are
challenging to convey, because of the lack of a clear visual
demarcation. In three dimensions, the visualization is fur-
thermore impeded by visual clutter and occlusion.

We represent the spatiotemporal clusters by discrete path-
lines, traced forward and backward in time, starting from
the cluster centers. By default, the lines are traced for a ti-
me period of two time-frames. The lines are generally not
restricted to the cluster boundaries.

We assume that the integral lines capture the time-varying
structure of the flow field for each cluster, based on spatio-
temporally well-distributed seed points, imposed by the clu-
stering. The extent to which the integral lines represent the
flow field depends, inter alia, on the dissimilarity measure.

The representative integral lines are depicted as arrows in
the direction of the flow, rendered in real-time. The arrows
are composed from illuminated tuboid imposters, with ar-
rowheads and end-caps (Fig. 9). A procedural texture is ap-

plied, superimposing a arrowhead pattern that indicates the
local direction on the tuboids. The long patharrows do not
have to be traced to the end to determine the direction. Star-
ting from either a 3D or a 4D center point, we devise two
approaches to generate the patharrows.

4.3.1. 3D-seeded arrows

The cluster centers provide an intuitive data-driven seeding
of the patharrows. However, the 3D cluster centers have no
explicit temporal coherence, as the spatial centers are com-
puted for all clusters that exist at the inspected time-point
(e.g., t = 1), without considering the temporal extent of the
cluster (Fig. 8a). This results in a relatively dense seeding, in
comparison to the use of 4D centers (Fig. 8b). Naturally, the
visual denseness also depends on the selected level-of-detail.

At the inspected time-point, short pathlines are traced in
real-time for each cluster center, and visualized as pathar-
rows. The resulting renditions are not suitable for animation,
due to the lack of temporal coherence between the 3D cluster
centers. However, this approach provides a comprehensive
overview of the structure of the flow at a given time-point.

4.3.2. 4D-seeded arrows

Alternatively, the sparser set of 4D cluster centers can be
used to seed the patharrows in a temporally coherent way.
Long pathlines are used to represent each cluster (Fig. 8b).

Based on this set of precomputed pathlines, we present
several visualization styles (Fig. 9). First, the whole set of
pathlines can be visualized directly using patharrows. This
provides a static overview of the full spatiotemporally clu-
stered flow data. To obtain a sufficiently sparse representati-
on, a high level-of-detail is required. The temporal characte-
ristics can be regained by color mapping the time component
(Fig. figure 9a). Alternatively, the local speed can be enco-
ded by color (Fig. 9b), losing temporal information.

0 380
time (ms)

(a) (b) (c)

0 60
speed (cm/s)

(d)

Figure 9: Close-up of 4D-seeded patharrows. (a) A time co-
lor coding reveals the temporal character. (b) Color may al-
so convey the flow speed. (c) The pathlines are employed
for animation. The color is desaturated, except for a sliding
window around the animation time-point. (d) Alternatively,
small patharrows may represent the sliding window. Note the
color correspondence between (b), (c), and (d).

c⃝ 2012 The Author(s)
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Figure 10: Blood-flow depicted by 3D-seeded patharrows
with anatomical context. (a) A cel shaded surface with con-
tours based on the surface curvature. (b) Opacity modulati-
on of the frontfaces ensures visibility of the patharrows.

Because of the temporal coherence, the static lines may be
used for animation. Therefore, we highlight parts of the li-
nes within a certain time window around the animated time-
point (Fig. 9c-d). The sliding window can be depicted as a
small patharrow, omitting the remainder of the pathlines out-
side of the window (Fig. 9d). This sliding window is tem-
porally interpolated, and smoothly appears and vanishes at
the end points of the underlying integral line.

To inspect the structure of the flow field more closely, the
full set of lines can be visualized as long patharrows, rende-
ring them with a fully desaturated color. The parts within the
sliding window are emphasized by color (Fig. 9c). During
animation, this window moves along the long patharrows,
highlighting flow patterns. These approaches are essentially
identical, shown by the corresponding regions in figures 9c
and d. The temporal interpolation also coincides.

Both animation styles comprehensively depict the tempo-
ral behavior of flow patterns. Human observers are by nature
exceptionally good at recognizing such patterns. Despite the
imposed cognitive load [TMB02], the animations take ad-
vantage of the intrinsic human perception of motion, facili-
tating understanding of the spatial relations and depth.

4.4. Anatomical context

In addition to the flow visualizations, we provide an anato-
mical context (Fig. 10a), based on an iso-surface extracted
from the tMIP volume. To avoid visual occlusion, frontfa-
ces are rendered using a view-dependent opacity modulation
(Fig. 10b), based on the Fresnel term [GNKP10]. The back-
faces are rendered with cel shading [vPOB∗10]. In addition,
we render contours, using the curvatures on the surface.

(a) (b)

Figure 11: Aortic dissection with pathological flow. (a) Ana-
tomical context based on a tMIP does not show the seconda-
ry system (dashed line). (b) A 4D-seeded patharrow anima-
tion highlights patterns. A window around 320 ms is shown.

5. Results

5.1. Data sets

The first data set comprises a PC-MRI blood-flow measure-
ment of a healthy volunteer (Fig. 10b). The second data set
includes pathological blood flow, used to demonstrate detec-
tion of abnormal flow patterns. The data are acquired from
patient suffering from an aortic dissection (Fig. 11 and 12).
The vessel wall is separated due to a tear in the vessel wall,
effectuating a secondary system with slowly flowing blood.
The slow flow is not captured by the tMIP (Fig. 11a), and
is hence omitted by the clustering threshold. However, an-
omalous blood-flow patterns occur in the main bloodstream.
For an application-specific analysis, the anatomical context
of the dissection should be based on an anatomical scan. The
patient study was approved by the local research ethics com-
mittee (study no. 08/H0809/49).

The third data set consists of a computational fluid dyna-
mics (CFD) simulation of the blood flow in a cerebral an-
eurysm (Fig. 13). The temporal resolution has the same or-
der of magnitude, while the spatial resolution is considerably
better than the PC-MRI examples. The blood flow interacts
with the surrounding tissues, and hence relations with the
vessel wall properties are important. The patharrows are the-
refore shown in relation to the context surface with a color
mapping of the wall-shear stress (WSS) [Day90].

5.2. Qualitative evaluation

The cluster shapes were visually evaluated for different data
sets. Based on the patharrows, we impose several require-
ments on the clusters. The clusters need to be spatially cohe-
rent, compact, and shaped along the blood-flow direction.

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 12: Aortic dissection with pathological blood flow,
depicted by long patharrows, based on 250 clusters using
the elliptical dissimilarity. The 4D-seeded short patharrows
convey the spatiotemporal structure, revealing flow patterns
during animation. The notable regions are indicated.

The linear expansion dissimilarity dlin yields compact clu-
sters, which are spatially coherent, and capture patterns such
as bifurcations. However, the cluster shape does not neces-
sarily align with the flow direction. Instead, the elliptical
measure dell shows compact clusters, which can be parame-
terized [TvW99]. The positional part ensures spatial cohe-
rence, while the velocity dissimilarity leads to clusters that
are shaped along the blood-flow. The preferred parameters
were empirically determined: α = 0.9, and ω = 0.9.

Using the elliptical dissimilarity, we have inspected
blood-flow patterns. As expected, blood flow of the volun-
teer primarily shows laminar behavior. In contrast, several
anomalous patterns are detected for the pathological case
(Fig. 12), including high vorticity regions.

For the inspected data, the patharrows are well-distributed
in space and time. The provided overviews are complemen-
tary to local inspection techniques that enable detailed pat-
tern analysis. For the blood-flow application, local inspec-
tion was for instance presented using probing techniques
[vPOB∗10, vPOB∗11].

5.3. Quantitative evaluation

The clustering was evaluated quantitatively, considering noi-
se robustness and performance. The noise in the velocity
data approximates a Gaussian distribution, with a signal-to-
noise ratio ranging between 10 and 25. The experiments we-
re performed on artificial flow data, varying the standard de-
viation of the additive Gaussian noise. The cluster results
are compared with the ground truth using the adjusted Rand
index [HA85]. The linear expansion dissimilarity shows a
varying index, while the elliptical dissimilarity is stable.

0 100

speed (cm/s)

0 140

WSS (Pa)

Figure 13: A CFD simulation of a cerebral aneurysm, de-
picted by static patharrows, based on 4D seed positions. A
high-speed in- and outflow is observed from the parent ves-
sel. Recirculating patterns occur within the aneurysm, which
are more clearly conveyed through animation.

A performance evaluation of both the clustering and the
rendering was carried out. A computer system was used,
with a dual core processor, 6GB memory, and an NVidia Ge-
Force 570 GTX graphics card. For each data sets, systole and
early diastole were clustered, capturing the important dyna-
mics. Larger data sets currently lead to memory footprint
issues. A tMIP volume was thresholded at 5% of its intensi-
ty range. The selected voxels were clustered using different
dissimilarity measures. Table 2 summarizes the results.

For the elliptical measure dell , we observe significant im-
provements in the clustering computation time using the
CHC approach, in comparison to a full tree generation (Ta-
ble 2). The linear model dissimilarity dlin is computationally
more expensive, in particular for noise-prone PC-MRI data.

For an abstract level-of detail, all visualizations render at
interactive framerates over fifteen frames per second, inclu-
ding anatomical context (Table 2). Lower levels lead to more
clusters, resulting in lower framerates.

6. Discussion

The presented techniques were implemented using the C++
programming language, supported by the OpenGL library,
the visualization toolkit (VTK), and the Qt graphical user-
interface library. Interactive inspection and animation requi-
re high performance rendering. Modern consumer graphics
hardware were exploited, using the GLSL shading language.

Clustering - The presented data-driven approach generical-
ly clusters the unsteady vector data. The domain-specific
knowledge is emerging, and hence no explicit knowledge
exists to identify clusters in the unsteady blood-flow data.
Therefore, we rely on properties of the blood-flow field.

c⃝ 2012 The Author(s)
c⃝ 2012 The Eurographics Association and Blackwell Publishing Ltd.
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Table 2: Performance of clustering and visualization. For
the dell measure (α = 0.9,ω = 0.9), a full hierarchy and
a CHC approximation (∆dth = 0.01) is included. The fra-
merates (FPS) are based on a cluster set near the tree top
(99.9%). We show the spatial dimensions, the number of
time-points, and the maximum speed that occurs in the data.

Volunteer Dissection Aneurysm
Dimensions 144×144×50 144×144×60 144×128×64
Resolution (mm) 2.1×2.1×2.7 2.1×2.1×2.5 0.2×0.1×0.3
Time-points 20 25 50
Iso-threshold 5% 5% 5%
Max speed (cm/s) 180 240 250
Cluster time-points [1,12] [1,12] [1,10]
Cluster nodes 621.8K 744.7K 589.9K
Cluster dell full 08h:43m 12h:08m 07h:33m
Cluster dell chc 58s 67s 53s
Cluster dlin chc 02h:20m 02h:02m 01h:04m
Cluster count 366 890 356
FPS dynamic 23.7 19.8 16.6
FPS static 23.8 19.9 17.1
Figures 7, 10 11,12 13

Although the cluster boundaries represent regions of co-
herent velocities, they do not truly exist in the continuous
flow field. They were not visualized to avoid false interpre-
tation of the boundaries as physical entities in the field. Con-
sequently, coverage of the patharrows may be hard to derive,
especially in regions with opposing arrows.

The coherence depends on the dissimilarity measure. The
definition of such a measure is complicated. A non-trivial
weighting between space and time is required, as the units
of these dimensions cannot be compared.

Visualization - Related work employs pathline visualizati-
ons, similar to our patharrows. Clinically-oriented papers
show seeding throughout the cardiovascular anatomy (e.g.,
[MKE∗11]). However, the densely sampled seed-points are
positioned randomly, and not based on the underlying da-
ta. Therefore, the clustering provides a data-driven seeding
approach, for a coarse to detailed view.

An important aspect of the visualization is the level-of-
detail selection. The selection is currently global, and does
not provide local detailed representations on demand. Con-
struction of labeled cluster volumes is performed when the
level-of-detail is changed. With the used data structures,
real-time localized level-of-detail changes need precompu-
ted cluster label volumes, leading to excessive memory use.

The temporal behavior of the intrinsically unsteady flow
data is captured using static and animated patharrows. Alt-
hough animations impose a considerable cognitive load
[TMB02], the human observer is sensitive to the apparent
motion in flow [SI10,WSE05]. Using animated short pathar-
rows (Fig. 9d), the patterns attract the attention. The struc-
ture of the flow field can be investigated in more detail using
static patharrows, possibly with sliding windows (Fig. 9c).

7. Conclusions and future work

In conclusion, we have presented a coarse hierarchical clu-
stering technique for four-dimensional flow data. The CHC
approach achieves a near linear computational complexity,
in contrast to the quadratic complexity of a naive imple-
mentation. Two dissimilarity measures were adapted for the
spacetime domain.

Clusters at a selected hierarchy level were represented
by patharrows. We introduced 3D-seeded and 4D-seeded
patharrow visualizations, combined with an illustrative ana-
tomical context. The 4D-seeded patharrows allow for a static
representations and animations of the spatiotemporal infor-
mation.

The clustering and visualization was applied to time-
resolved volumetric blood-flow data, either measured
through PC-MRI, or simulated by CFD. Different flow pat-
terns could be distinguished. These patterns can be related
to properties of the vessel wall.

In the future, the cluster approach can be improved. The
incremental threshold for the CHC approach could be ad-
justed during the clustering, according to the inter-cluster
dissimilarity. Alternatively, parallelization of the clustering
could be investigated, to further improve the performance.
Interactive level-of-detail selection, together with associated
visualization techniques, could provide details on demand.

The current visualization techniques depend on camera
interaction and animation to reveal the spatial relations. Dif-
ferent depth cues, such as shadows and halos, may be inve-
stigated. Also, time could be conveyed by illustrative tech-
niques, and additional information could be visualized, such
as the intra-cluster variance.

Moreover, it is worthwhile to investigate application-
specific approaches. The generic clustering can be fine-tuned
using domain-specific dissimilarity measures. This will lead
to different cluster results, which may require alternative
visualizations. Also for the blood-flow application, further
research is needed to address the specific goals of physi-
cians. Specific dissimilarity measures could cluster regions
with high vorticity, or low coherence of the blood-flow field.
The clustering results and associated visualizations should
be evaluated, measuring the value for preclinical research,
and potentially future diagnosis.
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